

Understanding and Mitigating the
Security Risks of Content
Inclusion in Web Browsers

A dissertation presented in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
in the field of

Information Assurance
by

Sajjad Arshad
Khoury College of Computer Sciences

Northeastern University

Ph.D. Committee

William Robertson Advisor, Northeastern University
Engin Kirda Advisor, Northeastern University
Guevara Noubir Internal, Northeastern University
Gianluca Stringhini External, Boston University

April 2019

Abstract

Thanks to the wide range of features o�ered by web browsers, modern websites include

various types of content such as JavaScript and Cascading Style Sheets (CSS) in order to

create interactive user interfaces. Browser vendors also provided extensions to enhance web

browsers with additional useful capabilities that are not necessarily maintained or supported

by default.

However, included content can introduce security risks to users of these websites, unbe-

knownst to both website operators and users. In addition, the browser’s interpretation of the

resource URLs may be very di�erent from how the web server resolves the URL to determ-

ine which resource should be returned to the browser. The URL may not correspond to an

actual server-side file system structure at all, or the web server may internally rewrite parts

of the URL. This semantic disconnect between web browsers and web servers in interpreting

relative paths (path confusion) could be exploited by Relative Path Overwrite (RPO). On the

other hand, even tough extensions provide useful additional functionality for web browsers,

they are also an increasingly popular vector for attacks. Due to the high degree of privilege

extensions can hold, extensions have been abused to inject advertisements into web pages

that divert revenue from content publishers and potentially expose users to malware.

In this thesis, I propose novel research into understanding and mitigating the security

risks of content inclusion in web browsers to protect website publishers as well as their users.

First, I introduce an in-browser approach called Excision to automatically detect and block

malicious third-party content inclusions as web pages are loaded into the user’s browser or

during the execution of browser extensions. Then, I propose OriginTracer, an in-browser

approach to highlight extension-based content modification of web pages. Finally, I present

the first in-depth study of style injection vulnerability using RPO and discuss potential

countermeasures.

Acknowledgments

I would like to thank my advisors, William Robertson and Engin Kirda, for their support and

valuable insights during my Ph.D. career. I am also thankful for working alongside my bril-

liant colleagues from whom I learned a lot: Amin Kharraz, Tobias Lauinger, Kaan Onarlio-

glu, Christo Wilson, Muhammad Ahmad Bashir, Abdelberi Chaabane, Michael Weissbacher,

and Mansour Ahmadi.

Special thanks to my brother, Kazem, for encouraging me to study computer science

in the first place, my brother, Saleh, for supporting me during the time I was living far

from home, Ali Mirheidari for pulling me into the web security world, and Reza Mirzazade

farkhani for pushing me toward playing CTFs.

Last but not least, I thank my whole family, specially my mom and my sisters, for their

support and patience during all these years.

1

Contents

1 Introduction 8

1.1 Thesis Contributions . 10

1.2 Thesis Structure . 12

2 Related Work 13

2.1 Content Isolation and Containment . 13

2.2 Blacklisting Malicious Domains . 14

2.3 Browser Extension Security . 14

2.4 Provenance Tracking . 15

2.5 Relative Path Overwrite . 16

2.6 Client-side Attacks . 17

3 Detection of Malicious Third-Party Content Inclusions 19

3.1 Introduction . 19

3.2 Background . 21

3.2.1 Threats . 21

3.2.2 Motivation . 21

3.3 Design . 24

3.3.1 Inclusion Trees and Sequences . 25

3.3.2 Inclusion Sequence Classification . 27

3.3.3 Classification Features . 28

2

3.4 Implementation . 31

3.4.1 Enhancements to the Blink . 32

3.4.2 Enhancements to the Extension Engine 32

3.5 Analysis . 33

3.5.1 Data Collection . 33

3.5.2 Building Labeled Datasets . 35

3.5.3 Detection Results . 36

3.5.4 Comparison with URL Scanners . 37

3.5.5 Performance . 37

3.5.6 Usability . 39

3.6 Discussion . 40

3.7 Chapter Summary . 41

4 Identifying Ad Injection in Browser Extensions 42

4.1 Introduction . 42

4.2 Background . 44

4.2.1 Browser Extensions . 44

4.2.2 Advertisement Injection . 45

4.2.3 Motivation . 46

4.3 Design . 48

4.3.1 Content Provenance . 48

4.3.2 Content Provenance Indicators . 51

4.4 Implementation . 52

4.4.1 Tracking Publisher Provenance . 52

4.4.2 Tracking Extension Provenance . 54

4.4.3 Content Provenance Indicators . 56

4.5 Analysis . 57

4.5.1 E�ectiveness . 58

3

4.5.2 Usability . 62

4.5.3 Performance . 63

4.6 Chapter Summary . 64

5 Analysis of Style Injection by Relative Path Overwrite 65

5.1 Introduction . 65

5.2 Background . 67

5.2.1 Cross-Site Scripting . 67

5.2.2 Scriptless Attacks . 67

5.2.3 Relative Path Overwrite . 69

5.2.4 Preconditions for RPO Style Attacks 70

5.3 Methodology . 72

5.3.1 Candidate Identification . 72

5.3.2 Vulnerability Detection . 74

5.3.3 Exploitability Detection . 78

5.3.4 Limitations . 79

5.4 Analysis . 79

5.4.1 Relative Stylesheet Paths . 80

5.4.2 Vulnerable Pages . 81

5.4.3 Exploitable Pages . 82

5.4.4 Content Management Systems . 88

5.4.5 Mitigation Techniques . 89

5.5 Chapter Summary . 90

6 Conclusion 91

6.1 Publications . 92

Bibliography 94

4

List of Figures

3.1 Unique number of included domains in theverge.com over 11 months. Meas-

urements were collected as part of the data set described in Section 3.5; the

sampling frequency was approximately once every three days 23

3.2 An overview of Excision . 24

3.3 (a) DOM Tree, and (b) Inclusion Tree . 25

3.4 (a) URL Inclusion Sequence, and (b) Domain Inclusion Sequence 26

3.5 E�ectiveness of features for classification (D = DNS, S = String, R = Role) . 36

3.6 Early detection results . 38

4.1 Overview of advertisement injection. (1) The user accesses the publisher’s

site. (2) An ad-injecting browser extension adds DOM elements to display ads

to the user, and optionally removes existing ads. (3) Ad revenue is diverted

from the publisher. (4) Ad impressions, clicks, and conversions are instead

directed to the extension’s ad network. (5) Ad revenue flows to the extension

author. 45

5

4.2 Element-granularity provenance tracking. (1) Content loaded directly from

the publisher is labeled with the publisher’s origin, l0. (2) An external script

reference to origin l1 is performed. (3) DOM modifications from l1’s script

are labeled with the label set {l0, l1}. (4) Further external script loads and

subsequent DOM modifications induce updated label sets – e.g., {l0, l1, l2}.

(5) A DOM modification that originates from an extension produces proven-

ance label sets {l0, l1, l2, l3} for the element 50

4.3 An example of indicator for an injected advertisement on amazon.com website 57

4.4 Percentage of injected ads that are reported correctly by all the participants 59

4.5 User study results. For each boxplot, the box represents the boundaries of the

first and third quartiles. The band within each box is the median, while the

triangle is the mean. The whiskers represent 1.5 IQR boundaries, and outliers

are represented as a circle . 60

5.1 Various techniques of path confusion and style injection. In each ex-

ample, the first URL corresponds to the regular page, and the second one

to the page URL crafted by the attacker. Each HTML page is assumed to

reference a stylesheet at ../style.css, resulting in the browser expanding

the stylesheet path as shown in the third URL. PAYLOAD corresponds

to %0A{}body{background:NONCE} (simplified), where NONCE is a randomly

generated string. 76

5.2 Percentage of the Alexa site ranking in our candidate set (exponentially in-

creasing bucket size). 80

5.3 CDF of total and maximum number of relative stylesheets per web page and

site, respectively. 81

5.4 Number of sites containing at least one page with a certain document type

(ordered by doctype rank). 85

6

List of Tables

3.1 TLD values . 28

3.2 Type values . 29

3.3 Summary of crawling statistics . 34

3.4 Data sets used in the evaluation . 35

4.1 Five popular Chrome extensions that modify web pages as part of their benign

functionality . 47

5.1 Sample URL grouping. 73

5.2 Narrowing down the Common Crawl to the candidate set used in our analysis

(from left to right) . 79

5.3 Vulnerable pages and sites in the candidate set 82

5.4 Exploitable pages and sites in the candidate set (IE using framing) 83

5.5 Quirks mode document types by browser . 83

5.6 Most frequent document types causing all browsers to render in quirks mode,

as well as the sites that use at least one such document type 84

5.7 Summary of document type usage in sites 85

7

Chapter 1

Introduction

Linking to the web content has been one of the defining features of the World Wide Web

since its inception, and this feature remains strongly evident today. For instance, recent

research [91] reveals that more than 93% of the most popular websites include JavaScript

from external sources. Developers typically include third-party content for convenience and

performance – e.g., many JavaScript libraries are hosted on fast content delivery networks

(CDNs) and are likely to already be cached by users – or to integrate with advertising net-

works, analytics frameworks, and social media. Content inclusion has also been used by

entities other than the website publishers themselves. For example, ad injection has been

adopted by ISPs and browser extension authors as a prominent technique for monetiza-

tion [82]. Browser extensions enhance browsers with additional useful capabilities that are

not necessarily maintained or supported by the browser vendor. Instead, this code is typ-

ically written by third parties and can perform a wide range of tasks, from simple changes

in the appearance of web pages to sophisticated tasks such as fine-grained filtering of con-

tent. To achieve these capabilities, browser extensions possess more privilege than other

third-party code that runs in the browser. For instance, extensions can access cross-domain

content, and perform network requests that are not subject to the same origin policy.

However, the inherent feature of content-sharing on the Web is also an Achilles heel when

8

it comes to security. Advertising networks, as one example, have emerged as an important

vector for adversaries to distribute attacks to a wide audience [71, 72, 92, 114, 130]. Moreover,

users are more susceptible to malvertising in the presence of ad injection [54, 117, 127]. In

general, linking to third-party content is essentially an assertion of trust that the content is

benign. This assertion can be violated in several ways, however, due to the dynamic nature

of the Web. Since website operators cannot control external content, they cannot know a

priori what links will resolve to in the future. The compromise of linked content or pure

malfeasance on the part of third parties can easily violate these trust assumptions. This is

only exacerbated by the transitive nature of trust on the Web, where requests for content

can be forwarded beyond the first, directly observable origin to unknown parties.

Furthermore, since extensive capabilities of browser extensions allow a comparatively

greater degree of control over the browser, they provide a unique opportunity to attack users

and their data, the underlying system, and even the Internet at large. For this reason, newer

browser extension frameworks such as Chromium’s have integrated least privilege separa-

tion via isolated worlds and a fine-grained permissions system to restrict the capabilities of

third-party extensions [15]. However, extension security frameworks are not a panacea. In

practice, their e�ectiveness is degraded by over-privilege and a lack of understanding of the

threats posed by highly-privileged extensions on the part of users [34]. Indeed, despite the

existence of extension security frameworks, it has recently been shown that extension-based

advertisement injection has become a popular and lucrative technique for dishonest parties

to monetize user web browsing. These extensions simply inject or replace ads in web pages

when users visit a website, thus creating or diverting an existing revenue stream to the third

party. Users often are not aware of these incidents and, even if this behavior is noticed, it

can be di�cult to identify the responsible party.

Web browsers also load internal resources using either absolute URLs or relative ones.

Before a web browser can issue a request for such a resource to the server, it must expand the

relative path into an absolute URL. Web browsers basically treat URLs as file system-like

9

paths. However, the browser’s interpretation of the URL may be very di�erent from how the

web server resolves the URL to determine which resource should be returned to the browser.

The URL may not correspond to an actual server-side file system structure at all, or the

web server may internally rewrite parts of the URL. This semantic disconnect between web

browsers and web servers in interpreting relative paths (path confusion) could be exploited

by Relative Path Overwrite (RPO). When an injection vulnerability is present in a page, an

attacker could manipulate the URL such that the web page references itself as the stylesheet,

which turns a simple text injection vulnerability into a style sink [50]. The general threat

model of RPO resembles that of Cross-Site Scripting (XSS). Typically, the attacker’s goal is

to steal sensitive information from a third-party site or make unauthorized transactions on

the site, such as gaining access to confidential financial information or transferring money

out of a victim’s account.

1.1 Thesis Contributions

Due to the increasing reliance of users on web browsers for day to day activities, I believe it

is important to characterize the extent of security risks of content inclusion on the Web. In

this thesis, I investigate the feasibility and e�ectiveness of novel approaches to measure and

reduce the security risks for website publishers as well as their users. I show that our novel

techniques are complementary to the existing defenses. To support my claim, I propose the

following:

First, I present a novel in-browser approach called Excision that automatically detects

and blocks malicious third-party content before it can attack the user’s browser. The ap-

proach leverages a high-fidelity in-browser vantage point that allows it to construct a precise

inclusion sequence for every third-party resource. We also describe a prototype of Excision

for the Chromium browser that can e�ectively prevent inclusions of malicious content. Fur-

thermore, we evaluate the e�ectiveness and performance of our prototype, and show that

10

it is able to automatically detect and block malicious third-party content inclusions in the

wild – including malicious resources not previously identified by popular malware blacklists

– without a significant impact on browser performance. Finally, we evaluate the usability

of our prototype and show that most users did not notice any significant quality impact on

their browsing experience.

Then, I introduce a novel in-browser approach to provenance tracking for web content

at the granularity of DOM elements, and present semantics for provenance propagation

due to script and extension execution. The approach leverages a high-fidelity in-browser

vantage point that allows it to construct a precise provenance label set for each DOM element

introduced into a web page. We also implement a prototype called OriginTracer that uses

content provenance to identify and highlight third-party content injection – e.g., unwanted

advertisements – by extensions to notify users of their presence and the originating principal.

Furthermore, we evaluate the e�ectiveness, performance, and usability of our prototype, and

show that it is able to significantly assist users in identifying ad injection by extensions in

the wild without degrading browser performance or the user experience.

Finally, I present the first automated and large-scale study of the prevalence and signi-

ficance of RPO vulnerabilities in the wild. To date, little is known about how widespread

RPO vulnerabilities are on the Web. Especially since the attack is more recent and less

well-known than traditional XSS, we believe it is important to characterize the extent of

the threat and quantify its enabling factors. Our measurement methodology tests how often

these preconditions hold in the wild in order to quantify the vulnerability and exploitability

of pages with respect to RPO attacks. We enumerate a range of factors that prevent a

vulnerable page from being exploited, and discuss how these could be used to mitigate these

vulnerabilities.

11

1.2 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 presents the related work.

The design and implementation of Excision for detecting malicious third-party content

inclusions are introduced in Chapter 3. Chapter 4 presents the architecture and evaluation of

OriginTracer to identify ad injection in browser extensions. We propose our methodology

for large-scale analysis of style injection by relative path overwrite in Chapter 5. Finally,

Chapter 6 concludes the thesis.

12

Chapter 2

Related Work

In this chapter, we place our proposed approaches in the context of related work.

2.1 Content Isolation and Containment

Several recent research projects [41, 115, 121] attempted to improve the security of browsers

by isolating browser components in order to minimize data sharing among software com-

ponents. The main issue with these approaches is that they do not perform any isolation

between JavaScript loaded from di�erent domains and web applications, letting untrusted

scripts access the main web application’s code and data. E�orts such as AdJail [77] attempt

to protect privacy by isolating ads into an iframe-based sandbox. However, this approach

restricts contextual targeting advertisement in which ad scripts need to have access to host

page content.

Another approach is to search and restrict third-party code included in web appl ic-

ations [35, 42, 80] . For example, ADsafe [3] removes dangerous JavaScript features (e.g.,

eval), enforcing a whitelist of allowed JavaScript functionality considered safe. It is also pos-

sible to protect against malicious JavaScript ads by enforcing policies at runtime [98, 102].

For example, Meyerovich et al. [84] introduce a client-side framework that allows web applic-

ations to enforce fine-grained security policies for DOM elements. AdSentry [30] provides a

13

shadow JavaScript engine that runs untrusted ad scripts in a sandboxed environment.

2.2 Blacklisting Malicious Domains

There are multiple approaches to automatically detecting malicious web domains. Madtracer [72]

has been proposed to automatically capture malvertising cases. But, this system is not as

precise as our approach in identifying the causal relationships among di�erent domains.

EXPOSURE [18] employs passive DNS analysis techniques to detect malicious domains.

SpiderWeb [114] is also a system that is able to detect malicious web pages by crowd-

sourcing redirection chains. Segugio [101] tracks new malware-control domain names in very

large ISP networks. WebWitness [90] automatically traces back malware download paths

to understand attack trends. While these techniques can be used to automatically detect

malicious websites and update blacklists, they are not online systems and may not be ef-

fectively used to detect malicious third-party inclusions since users expect a certain level of

performance while browsing the Web.

Another e�ective detection approach is to produce blacklists of malicious sites by scanning

the Internet that can be e�ciently checked by the browser (e.g., Google Safe Browsing [40]).

Blacklist construction requires extensive infrastructure to continuously scan the Internet and

bypass cloaking and general malware evasion attempts in order to reliably identify malware

distribution sites, phishing pages, and other Web malice. These blacklists sometimes lag the

introduction of malicious sites on the Internet, or fail to find these malicious sites. However,

they are nevertheless e�ective, and we view the approach we propose as a complementary

technique to established blacklist generation and enforcement techniques.

2.3 Browser Extension Security

Browser extension security has become a hot topic. The Chromium extension framework

substantially improved the ability of users to limit the amount of privilege conferred upon

14

potentially vulnerable extensions [15], and follow-on work has studied the success of this

approach [34, 75]. Other works have broadly studied malicious extensions that attempt to

exfiltrate sensitive user data [73, 78]. For instance, Arjun et al. showed that many exten-

sions in the Chrome Web Store are over-privileged for the actual services they purport to

provide [43].

A line of work has focused on the problem of ad injection via browser extensions. Thomas

et al. [117] proposed a detection methodology in which, they used a priori knowledge of

a legitimate DOM structure to report the deviations from that structure as potential ad

injections. However, this approach is not purely client-side and requires cooperation from

content publishers. Expector [127] inspects a browser extension and determines if it injects

advertisements into websites. Hulk [58] is a dynamic analysis system that automatically

detects Chrome extensions that perform certain types of malicious behaviors, including ad

injection. WebEval [54] is an automatic system that considers an extension’s behaviors, code,

and author reputation to identify malicious extensions distributed through the Chrome Web

Store. Web Tripwires [103] were also proposed to detect in-flight page changes performed in

order to inject advertisements.

In contrast, our work does not attempt to automatically classify extensions that engage

in content modification as malicious or not, but rather focuses on enabling users to make

informed decisions as to whether extensions engage in desirable behavior or not.

2.4 Provenance Tracking

A significant amount of work has examined the use of provenance in various contexts. For

instance, one line of work has studied the collection of provenance information for generic

applications up to entire systems [36, 46, 99]. However, to our knowledge, no system considers

the provenance of fine-grained web content comprising the DOM. Provenance tracking is also

related to information flow control (IFC), for which a considerable body of work exists at the

15

operating system level [32, 63, 131], the language level [87, 22], as well as the web [37, 51].

In contrast to our work, IFC is focused more on enforcing principled security guarantees

for new applications rather than tracking and indicating data provenance for existing ones.

Numerous systems have examined the use of dynamic taint analysis, a related concept to

provenance. Some prior work [17, 33] focuses on tracking information flow within the browser,

Sabre [29] detects whether extensions access sensitive information within the browser, and

DSI enforcement [88] defends against XSS attacks by preserving the integrity of document

structure in the browser. While there is certainly an overlap between dynamic taint analysis

and provenance, taint analysis is most often focused on simple reachability between sources

and sinks, while provenance is concerned with precisely tracking principals that influenced

data.

Finally, there is a line of work that examines provenance on the web. Some prior work [44,

45, 86] concerns coarse-grained ontologies for describing the origins of data on the web, and

does not consider provenance at a fine-grained scale within the browser. ESCUDO [56] only

considers the principals that can be controlled by web applications, and it does not handle

plug-ins and browser extensions. LeakTracker [118] performs principal-based tracking on web

pages to study privacy violations related to JavaScript libraries, but it only tracks injection

of scripts into the page, and does not provide any provenance information for other types of

DOM elements.

2.5 Relative Path Overwrite

The first account of RPO is attributed to a blog post by Gareth Heyes [50], introducing self-

referencing a PHP script with server-side URL rewriting. Furthermore, the post notes that

certain versions of Internet Explorer allow JavaScript execution from within a CSS context

in the Compatibility View mode [85], escalating style injection to XSS [128]. Another blog

post by Dalili [27] extends the technique to IIS and ASP.Net applications, and shows how

16

URL-encoded slashes are decoded by the server but not the browser, allowing not only self-

reference but also the inclusion of di�erent resources. Kettle [61] coins the term Path Relative

StyleSheet Import (PRSSI) for a specific subset of RPO attacks, introduces a PRSSI vul-

nerability scanner for Burp Suite [20], and proposes countermeasures. Terada [116] provides

more exploitation techniques for various browsers or certain web applications, and [129] dis-

cusses an example chaining several vulnerabilities to result in a combination of RPO and a

double style injection attack. Gil shows how attackers can deceive web cache servers by using

RPO [38, 39]. Some of the attacks discussed in the various blog posts are custom-tailored

to specific sites or applications, whereas others are more generic and apply to certain web

server configurations or frameworks.

We are not aware of any scholarly work about RPO, or any research about how prevalent

RPO vulnerabilities are on the Web. To the best of our knowledge, Burp Suite [20] is the

first and only tool that can detect PRSSI vulnerabilities based on RPO in web applications.

However, in contrast to our work, it does not determine if the vulnerability can be exploited.

Furthermore, we are the first to provide a comprehensive survey of how widespread RPO

style vulnerabilities and exploitabilities are in the wild.

2.6 Client-side Attacks

Script-based attacks has been studied extensively, such as systematic analysis of XSS san-

itization frameworks [124], detecting XSS vulnerabilities in Rich Internet Applications [12],

large-scale detection of DOM-based XSS [68, 76], and bypassing XSS mitigations by Script

Gadgets [67, 66]. An array of XSS prevention mechanisms have been proposed, such as XSS

Filter [104], XSS-Guard [19], SOMA [93], BluePrint [79], Document Structure Integrity [89],

XSS Auditor [16], NoScript [81], Context-Sensitive Auto-Sanitization (CSAS) [106], DOM-

based XSS filtering using runtime taint tracking [111], preventing script injection through

software design [59], Strict CSP [123], and DOMPurify [48]. However, the vulnerability

17

measurements and proposed countermeasures of these works on script injection do not apply

to RPO-based style injection.

18

Chapter 3

Detection of Malicious Third-Party

Content Inclusions

3.1 Introduction

While the Same Origin Policy (SOP) enforces a modicum of origin-based separation between

code and data from di�erent principals, developers have clamored for more flexible sharing

models provided by, e.g., Content Security Policy (CSP) [10], Cross-Origin Resource Sharing

(CORS) [9], and postMessage-based cross-frame communication. These newer standards

permit greater flexibility in performing cross-origin inclusions, and each come with associated

mechanisms for restricting communication to trusted origins. However, recent work has

shown that these standards are di�cult to apply securely in practice [109, 125], and do not

necessarily address the challenges of trusting remote inclusions on the dynamic Web. In

addition to the inapplicability of some approaches such as CSP, third parties can leverage

their power to bypass these security mechanisms. For example, ISPs and browser extensions

are able to tamper with HTTP tra�c to modify or remove CSP rules in HTTP responses [54,

117].

In this chapter, we propose an in-browser approach called Excision to automatically

19

detect and block malicious third-party content inclusions as web pages are loaded into the

user’s browser or during the execution of browser extensions. Our approach does not rely on

examination of the content of the resources; rather, it relies on analyzing the sequence of in-

clusions that leads to the resolution and loading of a terminal remote resource. Unlike prior

work [72], Excision resolves inclusion sequences through instrumentation of the browser

itself, an approach that provides a high-fidelity view of the third-party inclusion process as

well as the ability to interdict content loading in real-time. This precise view also renders

ine�ective common obfuscation techniques used by attackers to evade detection. Obfusca-

tion causes the detection rate of these approaches to degrade significantly since obfuscated

third-party inclusions cannot be traced using existing techniques [72]. Furthermore, the

in-browser property of our system allows users to browse websites with a higher confidence

since malicious third-party content is prevented from being included while the web page is

loading.

We implemented Excision as a set of modifications to the Chromium browser, and

evaluated its e�ectiveness by analyzing the Alexa Top 200K over a period of 11 months. Our

evaluation demonstrates that Excision achieves a 93.39% detection rate, a false positive rate

of 0.59%, and low performance overhead. We also performed a usability test of our research

prototype, which shows that Excision does not detract from the user’s browsing experience

while automatically protecting the user from the vast majority of malicious content on the

Web. The detection results suggest that Excision could be used as a complementary system

to other techniques such as CSP.

The rest of this chapter is organized as follows. Section 3.2 outlines the necessary back-

ground. Section 3.3 presents the architecture of Excision, while Section 3.4 discusses the

implementation of our system. We present an evaluation of the e�ectiveness, usability, and

performance of our prototype in Section 3.5. Finally, a discussion about our system is

presented in Section 3.6, and Section 3.7 summarizes the chapter.

20

3.2 Background

In the following, we first discuss the threats posed by third-party content and then motivate

our work.

3.2.1 Threats

While the inclusion of third-party content provides convenience for web developers and allows

for integration into advertising distribution, analytics, and social media networks, it can

potentially introduce a set of serious security threats for users. For instance, advertising

networks and social media have been and continue to be abused as a vector for injection

of malware. Website operators, or publishers, have little control over this content aside

from blind trust or security through isolation. Attacks distributed through these vectors

– in the absence of isolation – execute with the same privileges as all other JavaScript

within the security context of the enclosing DOM. In general, malicious code could launch

drive-by downloads [25], redirect visitors to phishing sites, generate fraudulent clicks on

advertisements [72], or steal user information [52].

Moreover, ad injection has become a new source of income for ISPs and browser extension

authors [82]. ISPs inject advertisements into web pages by tampering with their users’ HTTP

tra�c [23], and browser extension authors have recently started to inject or replace ads in

web pages to monetize their work. Ad injection negatively impacts both website publishers

and users by diverting revenue from publishers and exposing users to malvertising [117, 127].

In addition to ad injection, malicious browser extensions can also pose significant risks to

users due to the special privileges they have [58].

3.2.2 Motivation

Publishers can try to isolate untrusted third-party content using iframes (perhaps enhanced

with HTML5 sandboxing features), language-based sandboxing, or policy enforcement [3,

21

35, 42, 77, 80]. However, these approaches are not commonly used in practice; some degrade

the quality of ads (from the advertiser’s perspective), while others are non-trivial to deploy.

Publishers could attempt to use Content Security Policy (CSP) [10] to define and enforce

access control lists for remote inclusions in the browser. However, due to the dynamic nature

of the web, this approach (and similar access control policy-based techniques) has problems.

Recent studies [109, 125] indicate that CSP is di�cult to apply in practice. A major reason

for this is the unpredictability of the origins of inclusions for third-party resources, which

complicates the construction of a correct, yet tight, policy.

For example, when websites integrate third-party advertisements, multiple origins can be

contacted in order to deliver an ad to the user’s browser. This is often due to the practice

of re-selling ad space (a process known as ad syndication) or through real-time ad auctions.

Either of these approaches can result in ads being delivered through a series of JavaScript

code inclusions [113]. As a consequence, a long inclusion sequence of distinct origins will be

observed that – critically – does not remain constant on successive loads of the enclosing web

page. Additionally, the growing number of browser extensions makes it a non-trivial task for

website operators to enumerate the set of benign origins from which browser extensions might

include a resource. Therefore, defining an explicit whitelist of CSP rules is a challenging task.

To illustrate, Figure 3.1 shows the unique number of domains as well as the cumulative

number of unique domains included by theverge.com over a period of 11 months. The

unique number of domains increases roughly linearly over this period; clearly, constructing

an e�ective access control policy that tightly captures the set of allowable inclusions while

avoiding false positives that would lead to either lost revenue or broken functionality is

di�cult.

Even if website publishers can keep pace with origin diversity over time with a compre-

hensive list of CSP rules, ISPs and browser extensions are able to tamper with in-transit

HTTP tra�c and modify CSP rules sent by the websites. In addition, in browsers such

as Chrome, the web page’s CSP does not apply to extension scripts executed in the page’s

22

Figure 3.1: Unique number of included domains in theverge.com over 11 months. Measure-
ments were collected as part of the data set described in Section 3.5; the sampling frequency
was approximately once every three days

context [4]; hence, extensions are able to include arbitrary third-party resources into the web

page.

Given the challenges described above, we believe that existing techniques such as CSP

can be evaded and, hence, there is a need for an automatic approach to protect users from

malicious third-party content. We do not necessarily advocate such an approach in isolation,

however. Instead, we envision this approach as a complementary defense that can be layered

with other techniques in order to improve the safety of the Web.

23

Browser

Inclusion
Tree

Malicious
Model

Benign
Model

a

Inclusion Sequence

b c

cb

ba

a

Inclusion
Sequence
Classifier

Rendering
Engine

Extension
Engine

CSP Engine

inject scripts

check resource’s
origin and type

DOM Tree

check inclusion’s
maliciousness

Figure 3.2: An overview of Excision

3.3 Design

In this section, we describe Excision, our approach for detecting and blocking the inclusion

of malicious third-party content in real-time. An overview of our system is shown in Fig-

ure 3.2. Excision operates by extracting resource inclusion trees from within the browser.

The inclusion tree precisely records the inclusion relationships between di�erent resources

in a web page. When the user requests a web page, the browser retrieves the corresponding

HTML document and passes it to the rendering engine. The rendering engine incrementally

constructs an inclusion tree for the DOM and begins extracting external resources such as

scripts and frames as it reaches new HTML tags. For inclusion of a new resource, the render-

ing engine consults the CSP engine and the inclusion sequence classifier in order to decide

whether to include the resource. If the resource’s origin and type are whitelisted in the CSP

rules, the rendering engine includes the resource without consulting the inclusion sequence

classifier and continues parsing the rest of the HTML document. Otherwise, it extracts the

inclusion sequence (path through the page’s inclusion tree) for the resource and forwards

this to the inclusion sequence classifier. Using pre-learned models, the classifier returns a

decision about the malice of the resource to the rendering engine. Finally, the rendering

engine discards the resource if it was identified as malicious. The same process occurs for

resources that are included dynamically during the execution of extension content scripts

24

Web Page:a.com/index.html

<html>
 <head><title>...</title></head>
 <body>
 ...

 <div>
 <script src=”script.js”></script>

 <script src=”c.org/script.js”></script>
 <link href=”c.org/style.css”>
 </div>

 <script src=”d.com/script.js”></script>
 <iframe src=”e.net/frame.html”>
 <html>
 <head></head>
 <body>
 <script>...</script>
 <object data=”f.org/flash.swf”></object>
 </body>
 </html>
 </iframe>
 <script src=”g.com/script.js”></script>

 </body>
</html>

a.com/script.js

a.com/index.html

c.org/script.js

b.net/img.jpg

c.org/style.css

(a) (b)

d.com/script.js

inline-script

f.org/flash.swf

a.com/img.jpg

e.net/frame.html

ext-id/script.js

h.org/img.jpg

g.com/script.js

Figure 3.3: (a) DOM Tree, and (b) Inclusion Tree

after they are injected into the page.

3.3.1 Inclusion Trees and Sequences

A website can include resources in an HTML document from any origin so long as the

inclusion respects the same origin policy, its standard exceptions, or any additional policies

due to the use of CSP, CORS, or other access control framework. A first approximation

to understanding the inclusions of third-party content for a given web page is to process

its DOM tree [126] while the page loads. However, direct use of a web page’s DOM tree is

unsatisfactory because the DOM does not in fact reliably record the inclusion relationships

between resources referenced by a page. This follows from the ability for JavaScript to

manipulate the DOM at run-time using the DOM API.

Instead, in this work we define an inclusion tree abstraction extracted directly from

the browser’s resource loading code. Unlike a DOM tree, the inclusion tree represents how

di�erent resources are included in a web page that is invariant with respect to run-time DOM

updates. It also discards irrelevant portions of the DOM tree that do not reference remote

content. For each resource in the inclusion tree, there is an inclusion sequence that begins

with the root resource (i.e., the URL of the web page) and terminates with the corresponding

25

a.com f.net g.org i.net

a.com/index.htm f.net/adtag.js g.org/banner.htm

i.net/flash.swfg.org/adtag.js

(a)

(b)

Figure 3.4: (a) URL Inclusion Sequence, and (b) Domain Inclusion Sequence

resource. Furthermore, browser extensions can also manipulate the web page by injecting

and executing JavaScript code in the page’s context. Hence, the injected JavaScript is

considered a direct child of the root node in the inclusion tree. An example of a DOM

tree and its corresponding inclusion tree is shown in Figure 3.3. As shown in Figure 3.3b,

f.org/flash.swf has been dynamically added by an inline script to the DOM tree, and

its corresponding inclusion sequence has a length of 4 since we remove the inline resources

from inclusion sequence. Moreover, ext-id/script.js is injected by an extension as the

direct child of the root resource. This script then included g.com/script.js, which in turn

included h.org/img.jpg.

When we consider the full URL for constructing an inclusion sequence, the resulting

sequence is called a URL Inclusion Sequence. Figure 3.4a shows the URL inclusion sequence

of the resource i.net/flash.swf. However, some malware campaigns change their URL

patterns frequently to avoid detection. This can be done by changing the URL path and the

parameter values [72]. To overcome this problem and capture the high-level relationships

between di�erent websites, we only consider a domain part of the URL to build the Domain

Inclusion Sequence. Figure 3.4b shows the domain inclusion sequence corresponding to the

aforementioned URL inclusion sequence. As depicted, if consecutive URLs in a sequence

have the same domains, we merge them into one node. From now on, by inclusion sequence,

26

we refer to a domain inclusion sequence unless we mention URL inclusion sequence explicitly.

3.3.2 Inclusion Sequence Classification

Given an inclusion sequence, Excision must classify it as benign or malicious based on fea-

tures extracted from the sequence. The task of the inclusion sequence classifier is to assign a

class label from the set {benign,malicious} to a given sequence based on previously learned

models from a labeled data set. In our definition, a malicious sequence is one that starts

from the root URL of a web page and terminates in a URL that delivers malicious content.

For classification, we used hidden Markov models (HMM) [100]. Models are comprised of

states, each of which holds transitions to other states based on a probability distribution.

Each state can probabilistically emit a symbol from an alphabet. There are other sequence

classification techniques such as Naïve Bayes [69], but we used an HMM for our classifier

because we also want to model the inter-dependencies between the resources that compose

an inclusion sequence.

In the training phase, the system learns two HMMs from a training set of labeled se-

quences, one for the benign class and one for the malicious class. We estimated the HMM

parameters by employing the Baum-Welch algorithm which finds the maximum likelihood

estimate of these parameters based on the set of observed sequences. In our system, we em-

pirically selected 20 for the number of states that are fully connected to each other. In the

subsequent detection phase, we compute the likelihood of a new sequence given the trained

models using the forward-backward algorithm and assign the sequence to the class with the

highest likelihood. Training hidden Markov models is computationally expensive. However,

computing the likelihood of a sequence is instead very e�cient, which makes it a suitable

method for real-time classification [100].

27

Table 3.1: TLD values

(a) Individual

Value Example

none IPs, Extensions
gen *.com, *.org
gen-subdomain *.us.com
cc *.us, *.de, *.cn
cc-subdomain *.co.uk, *.com.cn
cc-int *.xn--p1ai (ru)
other *.biz, *.info

(b) Relative

Value Example

none root resource
{got,lost}-tld Ext. æ *.de, *.us æ IP
gen-to-{cc,other} *.org æ {*.de, *.info}
cc-to-{gen,other} *.uk æ {*.com, *.biz}
other-to-{gen,cc} *.info æ {*.net, *.uk}
same-{gen,cc,other} *.com æ *.com
di�-{gen,cc,other} *.info æ *.biz

3.3.3 Classification Features

Let r0 æ r1 æ · · · æ rn be an inclusion sequence as described above. Feature extraction

begins by converting the inclusion sequence into sequences of feature vectors. After analyzing

the inclusion trees of several thousand benign and malicious websites for a period of 11

months, we identified 12 feature types from three categories. For each feature type, we

compute two di�erent features: individual and relative features. An individual feature value

is only dependent on the current resource, but a relative feature value is dependent on

the current resource and its preceding (or parent) resources. Consequently, we have 24

features for each resource in an inclusion sequence. Individual features can have categorical

or continuous values. All continuous feature values are normalized on [0, 1] and their values

are discretized. In the case of continuous individual features, the relative feature values

are computed by comparing the individual value of the resource to its parent’s individual

value. The result of the comparison is less, equal, or more. We use the value none for the

root resource. To capture the high-level relationships between di�erent inclusions, we only

consider the domain part of the URL for feature calculation.

3.3.3.1 DNS-based Features

The first feature category that we consider is based on DNS properties of the resource domain.

28

Table 3.2: Type values

(a) Individual

Value Example

ipv6 2607:f0d0::::4
ipv4-private 192.168.0.1
ipv4-public 4.2.2.4
extension Ext. Scripts
dns-sld google.com
dns-sld-sub www.google.com
dns-non-sld abc.dyndns.org
dns-non-sld-sub a.b.dyndns.org

(b) Relative

Value Example

none root resource
same-site w.google.com æ ad.google.com
same-sld 1.dyndns.org æ 2.dyndns.org
same-company ad.google.com æ www.google.de
same-e�-tld bbc.co.uk æ london.co.uk
same-tld bbc.co.uk æ london.uk
di�erent google.com æ facebook.net

Top-Level Domain. For this feature, we measure the types of TLDs from which a resource

is included and how it changes along the inclusion sequence. For every resource in an inclusion

sequence, we assign one of the values in Table 3.1a as an individual feature. For the relative

feature, we consider the changes that occur between the top-level domain of the preceding

resource and the resource itself. Table 3.1b shows 15 di�erent values of the relative TLD

feature.

Type. This feature identifies the types of resource domains and their changes along the

inclusion sequence. Possible values of individual and relative features are shown in Table 3.2a

and Table 3.2b respectively.

Level. A domain name consists of a set of labels separated by dots. We say a domain name

with n labels is in level n ≠ 1. For example, www.google.com is in level 2. For IP addresses

and extension scripts, we consider their level to be 1. For a given domain, we compute the

individual feature by dividing the level by a maximum value of 126.

Alexa Ranking. We also consider the ranking of a resource’s domain in the Alexa Top

1M websites. To compute the normalized ranking as an individual feature, we divide the

ranking of the domain by one million. For IP addresses, extensions, and domains that are

not in the top 1M, we use the value none.

29

3.3.3.2 String-based Features

We observed that malicious domain names often make liberal use of digits and hyphens in

combination with alphabetical characters. So, in this feature category, we characterize the

string properties of resource domains. For IP addresses and extension scripts, we assign the

value 1 for individual features.

Non-Alphabetic Characters. For this feature, we compute the individual feature value

by dividing the number of non-alphabetical characters over the length of domain.

Unique Characters. We also measure the number of unique characters that are used in a

domain. The individual feature is the number of unique characters in the domain divided by

the maximum number of unique characters in the domain name, which is 38 (26 alphabetics,

10 digits, hyphen, and dot).

Character Frequency. For this feature, we simply measure how often a single character

is seen in a domain. To compute an individual feature value, we calculate the frequency of

each character in the domain and then divide the average of these frequencies by the length

of the domain to normalize the value.

Length. In this feature, we measure the length of the domain divided by the maximum

length of a domain, which is 253.

Entropy. In practice, benign domains are typically intended to be memorable to users.

This is often not a concern for attackers, as evidenced by the use of domain generation

algorithms [18]. Consequently, we employ Shannon entropy to measure the randomness of

domains in the inclusion sequence. We calculate normalized entropy as the absolute Shannon

entropy divided by the maximum entropy for the domain name.

30

3.3.3.3 Role-based Features

We observed that identifying the role of resources in the inclusion sequences can be helpful

in detecting malicious resources. For example, recent work [92] reveals that attackers misuse

ad networks as well as URL shortening services for malicious intent. So far, we consider

three roles for a resource: i) ad-network, ii) content delivery network (CDN), and iii) URL

shortening service. In total, we have three features in this category, as each domain can

simultaneously perform multiple roles. Both individual and relative features in this category

have binary values. For the individual feature, the value is Yes if the domain has the role, and

No otherwise. For the relative feature, we assign a value Yes if at least one of the preceding

domains have the corresponding role, and No otherwise. For extension scripts, we assign the

value No for all of the features. To assign the roles, we compiled a list of common domains

related to these roles that contains 5,767 ad-networks, 48 CDNs, and 461 URL shortening

services.

3.4 Implementation

In this section, we discuss our prototype implementation of Excision for detecting and

blocking malicious third-party content inclusions. We implemented Excision as a set of

modifications to the Chromium browser. In order to implement our system, we needed to

modify Blink and the Chromium extension engine to enable Excision to detect and block

inclusions of malicious content in an online and automatic fashion while the web page is

loading. The entire set of modifications consists of less than 1,000 lines of C++ and several

lines of JavaScript1. While our implementation could be adopted as-is by any browser

vendors that use WebKit-derived engines, the design presented here is highly likely to be

portable to other browsers.
1https://github.com/sajjadium/Excision

31

3.4.1 Enhancements to the Blink

Blink is primarily responsible for parsing HTML documents, managing script execution, and

fetching resources from the network. Consequently, it is ideally suited for constructing the

inclusion tree for a web page, as well as blocking the inclusion of malicious content.

3.4.1.1 Tracking Resource Inclusion

Static resource inclusions that are hard-coded by publishers inside the page’s HTML are

added to the inclusion tree as the direct children of the root node. For dynamic inclusions

(e.g., via the document.createElement() and document.write() DOM API functions),

the system must find the script resource responsible for the resource inclusion. To monitor

dynamic resource inclusions, the system tracks the start and termination of script execution.

Any resources that are included in this interval will be considered as the children of that

script resource in the inclusion tree.

3.4.1.2 Handling Events and Timers

Events and timers are widely used by web developers to respond to user interactions (e.g., click-

ing on an element) or schedule execution of code after some time has elapsed. To capture

the creation and firing of events and timers, the system tracks the registration of callback

functions for the corresponding APIs.

3.4.2 Enhancements to the Extension Engine

The Chromium extension engine handles the loading, management, and execution of exten-

sions. To access the page’s DOM, the extension injects and executes content scripts in the

page’s context which are regular JavaScript programs.

32

3.4.2.1 Tracking Content Scripts Injection and Execution

Content scripts are usually injected into web pages either via the extension’s manifest file

using the content_scripts field or at runtime via the executeScript API. Either way,

content scripts are considered direct children of the root node in the inclusion tree. There-

fore, in order to track the inclusion of resources as a result of content script execution, the

extension engine was modified to track the injection and execution of content scripts.

3.4.2.2 Handling Callback Functions

Like any other JavaScript program, content scripts rely heavily on callback functions. For

instance, onMessage and sendMessage are used by content scripts to exchange messages with

their background pages. To track the execution of callback functions, two JavaScript files

were modified in the extension engine which are responsible for invocation and management

of callback functions.

3.5 Analysis

In this section, we evaluate the security benefits, performance, and usability of the Excision

prototype. We describe the data sets we used to train and evaluate the system, and then

present the results of the experiments.

3.5.1 Data Collection

To collect inclusion sequences, we performed two separate crawls for websites and extensions.

The summary of crawling statistics are presented in Table 3.3.

3.5.1.1 Website Crawl

We built a crawler based on an instrumented version of PhantomJS [6], a scriptable open

source browser based on WebKit, and crawled the home pages of the Alexa Top 200K.

33

Table 3.3: Summary of crawling statistics

Item Website Crawl Extension Crawl

Websites Crawled 234,529 20
Unavailable Websites 7,412 0

Unique Inclusion Trees 47,789,268 35,004
Unique Inclusion Sequences 27,261,945 61,489

Unique URLs 546,649,590 72,064
Unique Domains 1,368,021 1,144
Unique Sites 459,615 749
Unique SLDs 419,119 723
Unique Companies 384,820 719
Unique E�ective TLDs 1,115 21
Unique TLDs 404 21
Unique IPs 9,755 3

We performed our data collection from June 20th, 2014 to May 11th, 2015. The crawl

was parallelized by deploying 50 crawler instances on five virtual machines, each of which

crawled a fixed subset of the Alexa Top 200K websites. To ensure that visited websites

did not store any data on the clients, the crawler ran a fresh instance of PhantomJS for

each visit. Once all crawlers finished crawling the list of websites, the process was restarted

from the beginning. To thwart cloaking techniques [57] utilized by attackers, the crawlers

presented a user agent for IE 6.0 on Windows and employed Tor to send HTTP requests

from di�erent source IP addresses. We also address JavaScript-based browser fingerprinting

by modifying the internal implementation of the navigator object to return a fake value

for the appCodeName, appName, appVersion, platform, product, userAgent, and vendor

attributes.

3.5.1.2 Extension Crawl

To collect inclusion sequences related to extensions, we used 292 Chrome extensions reported

in prior work [127] that injected ads into web pages. Since ad-injecting extensions mostly

target shopping websites (e.g., Amazon), we chose the Alexa Top 20 shopping websites for

crawling to trigger ad injection by those 292 extensions. We built a crawler by instrumenting

Chromium 43 and collected data for a period of one week from June 16th to June 22nd,

34

Table 3.4: Data sets used in the evaluation

Dataset
No. of Inclusion Sequences No. of Terminal Domains

Website Crawl Ext. Crawl Website Crawl Ext. Crawl

Benign 3,706,451 7,372 35,044 250
Malicious 25,153 19 1,226 2

2015. The system loaded every extension and then visited the home pages of the Alexa

Top 20 shopping websites using Selenium WebDriver [107]. This process was repeated after

crawling the entire set of extensions. In addition, our crawler triggered all the events and

timers registered by content scripts.

3.5.2 Building Labeled Datasets

To classify a given inclusion sequence as benign or malicious, we trained two hidden Markov

models for benign and malicious inclusion sequences from our data set. We labeled collected

inclusion sequences as either benign or malicious using VirusTotal [8]. VirusTotal’s URL

scanning service aggregates reports of malicious URLs from most prominent URL scanners

such as Google Safe Browsing [40] and the Malware Domain List. The malicious data

set contains all inclusion sequences where the last included resource’s domain is reported

malicious by at least three out of the 62 URL scanners in VirusTotal. On the other hand,

the benign data set only contains inclusion sequences that do not contain any domain in the

entire sequence that is reported as malicious by any URL scanner in VirusTotal. To build

benign data set, we considered reputable domains such as well-known search engines and

advertising networks as benign regardless of whether they are reported as malicious by any

URL scanner in VirusTotal. Table 3.4 summarizes the data sets2. The unique number of

inclusion sequences and terminal domains are shown separately for the website and extension

data sets. The terminal domains column is the number of unique domains that terminate

inclusion sequences.
2https://github.com/sajjadium/Excision

35

Figure 3.5: E�ectiveness of features for classification (D = DNS, S = String, R = Role)

3.5.3 Detection Results

To evaluate the accuracy of our classifier, we used 10-fold cross-validation, in which we first

partitioned each data set into 10 equal-sized folds, trained the models on nine folds, and

then validated the resulting models with the remaining fold. The process was repeated for

each fold and, at the end, we calculated the average false positive rate and false negative

rate. When splitting the data set into training and testing sets, we made sure that inclu-

sion sequences with di�erent lengths were present in both. We also ensured that both sets

contained extension-related inclusion sequences.

The results show that our classifier achieved a false positive rate of 0.59% and false

negative rate of 6.61% (detection rate of 93.39%). Most of the false positives are due to

inclusion sequences that do not appear too often in the training sets. Hence, users are

unlikely to experience many false positives in a real browsing environment (as will be shown

36

in our usability analysis in Section 3.5.6).

To quantify the contribution of di�erent feature categories to the classification, we trained

classifiers using di�erent combinations of feature categories and compared the results. Fig-

ure 3.5 shows the false positive rate and false negative rate of every combination with a

10-fold cross-validation training scheme. According to Figure 3.5, the best false positive and

false negative rates were obtained using the combination of all feature categories.

3.5.4 Comparison with URL Scanners

To evaluate the ability of our system in detecting unreported suspicious domains, we ran

our classifier on inclusion sequences collected from June 1st until July 14th, 2015. We

compared our detection results with reports from URL scanners in VirusTotal and detected

89 new suspicious domains. We believe that these domains are in fact dedicated malicious

domains that play the role of redirectors and manage malicious tra�c flows as described

in prior work [71]. These domains did not deliver malicious resources themselves, but they

consistently included resources from other domains that were flagged as malicious by URL

scanners. Out of 89 suspicious domains, nearly 44% were recently registered in 2015, and

more than 23% no longer resolve to an IP address.

Furthermore, we detected 177 domains that were later reported by URL scanners after

some delay. Figure 3.6 shows the early detection results of our system. A significant number

of these domains were not reported until some time had passed after Excision initially

identified them. For instance, nearly 78% of the malicious domains were not reported by

any URL scanner during the first week.

3.5.5 Performance

To assess the performance of Excision, we used Selenium to automatically visit the Alexa

Top 1K with both original and modified Chromium browsers. In order to measure our

prototype performance with a realistic set of extensions, we installed five of the most popular

37

Figure 3.6: Early detection results

extensions in the Chrome Web Store: Adblock Plus, Google Translate, Google Dictionary,

Evernote Web Clipper, and Tampermonkey.

For each browser, we visited the home pages of the entire list of websites and recorded

the total elapsed time. Due to the dynamic nature of ads and their influence on page

load time, we repeated the experiment 10 times and measured the average elapsed time.

On average, the elapsed times were 3,065 and 3,438 seconds for the original and modified

browsers, respectively. Therefore, Excision incurred a 12.2% overhead on browsing time on

average, which corresponds to a noticeable overhead that is nevertheless acceptable for many

users (see Section 3.5.6). To measure the overhead incurred by Excision on browser startup

time, we launched the modified browser 10 times and measured the average browser launch

time. Excision caused a 3.2 seconds delay on browser startup time, which is ameliorated

by the fact that this is a one-time performance hit.

38

3.5.6 Usability

We conducted an experiment to evaluate the impact of Excision on the user’s browsing

experience. We conducted the study on 10 students that self-reported as expert Internet

users. We provided each participant with a list of 50 websites that were selected randomly

from the Alexa Top 500 and then asked them to visit at least three levels down in each

website. Participants were asked to report the number of visited pages and the list of domains

reported as malicious by our system. In addition, participants were asked to record the

number of errors they encountered while they browsed the websites. Errors were considered

to occur when the browser crashed, the appearance of a web page was corrupted, or page

load times were abnormally long. Furthermore, in order to ensure that benign extensions

were not prevented from executing as expected in the presence of our system, the browser

was configured to load the five popular extensions listed in Section 3.5.5 and participants

were asked to report any problem while using the extensions.

The results of the study show that out of 5,129 web pages visited by the participants,

only 83 errors were encountered and the majority of web pages loaded correctly. Most of

these errors happened due to relatively high load times. In addition, none of the participants

reported any broken extensions. Furthermore, 31 malicious inclusions were reported by our

tool that were automatically processed (without manual examination, for privacy reasons)

using VirusTotal. Based on the results, we believe that our proof-of-concept prototype is

compatible with frequently used websites and extensions, and can be improved through

further engineering to work completely free of errors.

Ethics. In designing the usability experiment, we made a conscious e�ort to avoid collect-

ing personal or sensitive information. In particular, we restricted the kinds of information

we asked users to report to incidence counts for each of the categories of information, except

for malicious URLs that were reported by our tool. Malicious URLs were automatically

submitted to VirusTotal to obtain a malice classification before being discarded, and were

39

not viewed by us or manually inspected. In addition, the participants were asked to avoid

browsing websites requiring a login or involving sensitive subject matter.

3.6 Discussion

Our study shows that detecting malicious third-party inclusions is possible by analyzing

resource inclusion sequences. According to the evaluation results, Excision can detect a

large number of malicious inclusions with a low false positive rate of 0.59%. However, due to

the in-browser and real-time nature of our system, we cannot easily incorporate other useful

features such as domain registration information or a global view of Web inclusions into our

detection system. For domain registration information, we would need to regularly fetch

domain whois records; as these databases are rate-limited, this is not currently feasible.

In this work, we crafted a feature set that is suited for an online, in-browser system to

detects malicious inclusion sequences as web pages load. But, attackers might try to exploit

features we adopt to avoid detection by Excision. For example, they might choose more

meaningful names for their domains or improve their domains’ Alexa rankings with SEO

techniques [57]. However, these attempts are not very e�ective since Excision rely on the

business relationship between the hosts inside the inclusion sequences for finding malicious

resource in addition to the individual hosts characteristics. Attackers need to change the

sequence of inclusions to evade our system which is not a trivial task and it increases the

di�culty of the attack significantly.

Moreover, we envision that both web users and website administrators can benefit from

using Excision. Excision protects users from attacks by preventing browsers from includ-

ing a malicious resource into web pages. Furthermore, Excision allows website adminis-

trators to have more control over the content that is delivered to their visitors when they

sell space to ad networks. Administrators do not need to write comprehensive CSP rules to

control dynamic content that is managed by third-party content providers. In addition to

40

website administrators and web users, the models learned by Excision can be used by ad

networks, URL scanners, and large organizations as well. They could passively crawl various

websites to identify compromised websites and malicious origins, and this information could

be used to augment blacklists and reputation-based services (e.g., Google Safebrowsing) and

also update corporate firewall policies to prevent other clients from loading resources from

those malicious origins.

3.7 Chapter Summary

In this chapter, we presented Excision, an in-browser system to automatically detect and

block malicious third-party content inclusions before they can attack the user’s browser.

Our system is implemented as a set of modifications to the Chromium browser and does

not perform any blacklisting to detect malicious third-party inclusions. Our evaluation over

an 11 month crawl of the Alexa Top 200K demonstrates that the prototype implementation

of Excision achieved a 93.39% detection rate with a false positive rate of 0.59%. We

also evaluated the performance and usability of Excision when browsing popular websites,

and showed that the approach is capable of improving the security of users on the Web by

detecting 31 malicious inclusions during a user study without significantly degrading the

user experience.

41

Chapter 4

Identifying Ad Injection in Browser

Extensions

4.1 Introduction

While ad injection cannot necessarily be categorized as an outright malicious activity on its

own, it is highly likely that many users in fact do not want or expect browser extensions to

inject advertisements or other content into Web pages. Moreover, it can have a significant

impact on the security and privacy of both users as well as website publishers. For example,

recent studies have shown that ad-injecting extensions not only serve ads from ad networks

other than the ones with which the website publishers intended, but they also attempt to

trick users into installing malware by inserting rogue elements into the web page [117, 127].

To address this problem, several automatic approaches have been proposed to detect

malicious behaviors (e.g., ad injection) in browser extensions [127, 58, 54]. In addition,

centralized distribution points such as Chrome Web Store and Mozilla Add-ons are using

semi-automated techniques for review of extension behavior to detect misbehaving exten-

sions. However, there is no guarantee that analyzing the extensions for a limited period of

time leads to revealing the ad injection behaviors. Finally, a client-side detection methodo-

42

logy has been proposed in [117] that reports any deviation from a legitimate DOM structure

as potential ad injections. However, this approach requires a priori knowledge of a legitimate

DOM structure as well as cooperation from content publishers.

Although ad injection can therefore potentially pose significant risks, this issue is not as

clear-cut as it might first seem. Some users might legitimately want the third-party content

injected by the extensions they install, even including injected advertisements. This creates

a fundamental dilemma for automated techniques that aim to identify clearly malicious or

unwanted content injection, since such techniques cannot intuit user intent and desires in a

fully automatic way.

To resolve this dilemma, we present OriginTracer, an in-browser approach to highlight

extension-based content modification of web pages. OriginTracer monitors the execution

of browser extensions to detect content modifications such as the injection of advertisements.

Content modifications are visually highlighted in the context of the web page in order to

i) notify users of the presence of modified content, and ii) inform users of the source of the

modifications.

With this information, users can then make an informed decision as to whether they

actually want these content modifications from specific extensions, or whether they would

rather uninstall the extensions that violate their expectations.

OriginTracer assists users in detecting content injection by distinguishing injected or

modified DOM elements from genuine page elements. This is performed by annotating web

page DOM elements with a provenance label set that indicates the principal(s) responsible for

adding or modifying that element, both while the page is loading from the publisher as well

as during normal script and extension execution. These annotations serve as trustworthy,

fine-grained provenance indicators for web page content. OriginTracer can be easily

integrated into any browser in order to inform users of extension-based content modification.

Since OriginTracer identifies all types of content injections, it is able to highlight all

injected advertisements regardless of their types (e.g., flash ads, banner ads, and text ads).

43

We implemented a prototype of OriginTracer as a set of modifications to the Chro-

mium browser, and evaluated its e�ectiveness by conducting a user study. The user study

reveals that OriginTracer produced a significantly greater awareness of third-party con-

tent modification, and did not detract from the users’ browsing experience.

The rest of this chapter is organized as follows. Section 4.2 outlines the necessary back-

ground on browser extensions and ad injection. Section 4.3 presents our approach to web

content provenance, while Section 4.4 discusses the implementation of our prototype system.

An evaluation of the e�ectiveness, usability, and performance of our prototype is presented

in Section 4.5 and Section 4.6 summarizes the paper.

4.2 Background

In the following, we introduce background information on browser extensions, present an

overview of advertisement injection as a canonical example of questionable content modific-

ation, and motivate our approach in this context.

4.2.1 Browser Extensions

Browser extensions are programs that extend the functionality of a web browser. Today,

extensions are typically implemented using a combination of HTML, CSS, and JavaScript

written against a browser-specific extension API. These APIs expose the ability to modify

the browser user interface in controlled ways, manipulate HTTP headers, and modify web

page content through the document object model (DOM) API. An extension ecosystem is

provided by almost all major browser vendors; for instance, Google and Mozilla both host

centralized repositories of extensions that users can download at the Chrome Web Store and

Mozilla Add-ons sites, respectively.

44

Browser

Publisher

Publisher
Ad Network

Extension
Ad Network

DOM

Ad-Injecting
Extension

Extension
Author

1

2

3

4

5

Figure 4.1: Overview of advertisement injection. (1) The user accesses the publisher’s
site. (2) An ad-injecting browser extension adds DOM elements to display ads to the
user, and optionally removes existing ads. (3) Ad revenue is diverted from the publisher.
(4) Ad impressions, clicks, and conversions are instead directed to the extension’s ad network.
(5) Ad revenue flows to the extension author.

4.2.2 Advertisement Injection

As web advertising grew in popularity, those in a position to modify web content such as

ISPs and browser extension authors realized that profit could be realized by injecting or

replacing ads in web pages. For instance, some ISPs began to tamper with HTTP tra�c

in transit, injecting DOM elements into HTML documents that added ISP’s advertisements

into pages visited by their customers [24, 64]. In a similar fashion, browser extensions started

modifying pages to inject DOM elements in order to show ads to users without necessarily

obtaining the user’s prior consent. Ad injection has evolved to become a common form of

unrequested third-party content injection on today’s web [82].

45

These practices have several e�ects on both publishers and users. On one hand, ad

injection diverts revenue from the publisher to the third party responsible for the ad injection.

If advertisements are the primary source of income for a publisher, this can have a significant

e�ect on their bottom line. If the injected ads contain or reference undesired content (e.g.,

adult or political topics), ad injection can also harm the reputation of the publisher from

the user’s perspective. If the content injection is also malicious in nature, the publisher’s

reputation can be further harmed in addition to exposing users to security risks due to

malware, phishing, and other threats. Prior work has shown that users exposed to ad

injection are more likely to be exposed to “malvertising” and traditional malware [117, 127].

Figure 4.1 gives an overview of ad injection’s e�ect on the normal ad delivery process, while

Figure 4.3 shows an instance of ad injection on amazon.com website.

4.2.3 Motivation

Recently, there have been e�orts by browser vendors to remove ad-injecting extensions from

their repositories [1]. Although semi-automated central approaches have been successful in

identifying ad-injecting extensions, deceptive extensions can simply hide their ad injection

behaviors during the short period of analysis time. In addition, finding web pages that

trigger ad injection is a non-trivial task, and they can miss some ad-injecting extensions.

Moreover, there are extensions that are not provided through the web stores, and users can

get them from local marketplaces, which may not examined the extensions properly. Hence,

we believe that there is a need for a protection tool to combat ad injection on the client side

in addition to centralized examination by browser vendors.

Furthermore, automatically determining whether third-party content modification – such

as that due to ad injection – should be allowed is not straightforward. Benign extensions

extensively modify web pages as part of their normal functionality. To substantiate this,

we examined five popular Chrome extensions as of the time of writing; these are listed in

Table 4.1. Each of these extensions are available for all major browsers, and all modify

46

Table 4.1: Five popular Chrome extensions that modify web pages as part of their benign
functionality

Extension No. of Users Injected Element

Adblock Plus 10,000,000+ <iframe>
Google Translate 6,000,000+ <div>
Tampermonkey 5,800,000+
Evernote Web Clipper 4,300,000+ <iframe>
Google Dictionary 3,000,000+ <div>

web pages (e.g., inject elements) to implement their functionality. Therefore, automated

approaches based on this criterion run a high risk of false positives when attempting to

identify malicious or undesirable extensions.

Moreover, it is not enough to identify that advertisements, for instance, have been injected

by a third party. This is because some users might legitimately desire the content that is

being added to web pages by the extensions they install. To wit, it is primarily for this

reason that a recent purge of extensions from the Chrome Web Store did not encompass

the entirety of the extensions that were identified as suspicious in a previous study, as the

third-party content modification could not be clearly considered as malicious [117]. Instead,

we claim that users themselves are best positioned to make the determination as to whether

third-party content modification is desired or not. An approach that proceeds from this

observation would provide su�cient, easily comprehensible information to users in order to

allow an informed choice as to whether content is desirable or should be blocked. It should

be noted that defending against drive-by downloads and general malware is not the focus of

this paper. Rather, the goal is to highlight injected ads to increase likelihood that user will

make an informed choice to not click on them.

We envision that OriginTracer could be used as a complementary approach to existing

techniques such as central approaches used by browser vendors. Also, browser vendors can

benefit from using our system in addition to end users to detect the content modifications

by extensions in a more precise and reliable way. In the following sections, we present design

and implementation of our system.

47

4.3 Design

In this section, we describe an in-browser approach for identifying third-party content modi-

fications in web browsers. The approach adds fine-grained provenance tracking to the

browser, at the level of individual DOM elements. Provenance information is used in two

ways: i) to distinguish between content that originates from the web page publisher and

content injected by an unassociated third party, and ii) to indicate which third party (e.g.,

extension) is responsible for content modifications using provenance indicators. By integ-

rating the approach directly into the browser, we guarantee the trustworthiness of both the

provenance information and the visual indicators. That is, as the browser is already part of

the trusted computing base (TCB) in the web security model, we leverage this as the appro-

priate layer to compute precise, fine-grained provenance information. Similarly, the browser

holds su�cient information to ensure that provenance indicators cannot be tampered with or

occluded by malicious extensions. While we consider malicious or exploited browser plug-ins

such as Flash Player outside our threat model, we note that modern browsers take great

pains to isolate plug-ins in least privilege protection domains. We report separately on the

implementation of the approach in Section 4.4.

In the following, we present our approach to tracking and propagating content proven-

ance, and then discuss provenance indicators and remediation strategies.

4.3.1 Content Provenance

Web pages are composed of HTML that references resources such as stylesheets, scripts,

images, plug-ins such as Flash objects, or even other web pages loaded inside frames. The

document object model (DOM) is a natural structural representation of a web page that

can be manipulated through a standard API, and serves as a suitable basis for provenance

tracking. In particular, our system tracks the provenance of each element e contained in a

DOM. Provenance for a DOM element is recorded as a set of labels ¸ œ P (L), where the set

48

of all labels L corresponds to a generalization of standard web origins to include extensions.

That is, instead of the classic origin 3-tuple of Èscheme, host, portÍ, we record

L = ÈS, I, P, XÍ

S = {scheme} fi {“extension”}

I = {host} fi {extension-identifier}

P = {port} fi {null}

X = {0, 1, 2, . . .}

In other words, a label is a 4-tuple that consists of a normal network scheme or extension,

a network host or a unique extension identifier, a port or the special null value, and an index

used to impose a global total order on labels as described below. While browsers use di�erent

extension identifiers, including randomly-generated identifiers, the exact representation used

is unimportant so long as there is a one-to-one mapping between extensions and identifiers

and their use is locally consistent within the browser. An overview of provenance tracking

is depicted in Figure 4.2.

4.3.1.1 Static Publisher Provenance

Content provenance tracking begins with a web page load. As the DOM is parsed by the

browser, each element is labeled with a singleton label set containing the origin of the

publisher, {l0}. Thus, static provenance tracking is straightforward and equivalent to the

standard use of origins as a browser security context.

4.3.1.2 Dynamic Publisher Provenance

Content provenance becomes more interesting in the presence of dynamic code execution.

As JavaScript can add, modify, and remove DOM elements in an arbitrary fashion using the

49

Browser

Publisher

DOM

Extension

1

2

Script Host 1

Script Host 2

3

4
5

{l0}

{l1}

{l2}{l3}

{l0, l1}

{l0, l1, l2}

Figure 4.2: Element-granularity provenance tracking. (1) Content loaded directly from the
publisher is labeled with the publisher’s origin, l0. (2) An external script reference to origin
l1 is performed. (3) DOM modifications from l1’s script are labeled with the label set {l0, l1}.
(4) Further external script loads and subsequent DOM modifications induce updated label
sets – e.g., {l0, l1, l2}. (5) A DOM modification that originates from an extension produces
provenance label sets {l0, l1, l2, l3} for the element

DOM API exposed by the browser, it is necessary to track these modifications in terms of

provenance labels.

New provenance labels are created from the publisher’s label set {l0} as follows. Whenever

an external script is referenced from the initial DOM resulting from the page load, a new

label li, i œ {1, 2, . . .} is generated from the origin of the script. All subsequent DOM

modifications that occur as a result of an external script loaded from the initial DOM are

recorded as {l0, li}. Successive external script loads follow the expected inductive label

generation process – i.e., three successive external script loads from unique origins will result

in a label set {l0, li, lj, lk}. Finally, label sets contain unique elements such that consecutive

external script loads from a previously accessed origin are not reflected in the label for

subsequent DOM modifications. For instance, if the web page publisher loads a script from

the publisher’s origin, then any resulting DOM modifications will have a provenance label

50

set of {l0} instead of {l0, l0}. Content provenance is propagated for three generic classes of

DOM operations: element insertion, modification, and deletion.

Element insertions produce an updated DOM that contains the new element labeled with

the current label set, and potentially generates a new label set if the injected element is a

script. Element modifications produce a DOM where the modified element’s label set is

merged with the current label set. Finally, element deletions simply remove the element

from the DOM.

4.3.1.3 Extension Provenance

The third and final form of provenance tracking concerns content modifications due to DOM

manipulations by extensions. In this case, provenance propagation follows the semantics for

the above case of dynamic publisher provenance. Where these two cases di�er, however, is in

the provenance label initialization. While provenance label sets for content that originates,

perhaps indirectly, from the web page publisher contains the publisher’s origin label l0, con-

tent that originates from an extension is rooted in a label set initialized with the extension’s

label. In particular, content modifications that originate from an extension are not labeled

by the publisher’s origin. An exception to this occurs when the extension, either directly

or indirectly, subsequently loads scripts from the publisher, or modifies an existing element

that originated from the publisher.

4.3.2 Content Provenance Indicators

With the fine-grained content provenance scheme described above, identifying the principal

responsible for DOM modifications is straightforward. For each element, all that is required

is to inspect its label set ¸ to check whether it contains the label of any extension.

A related, but separate, question is how best to relay this information to the user. In

this design, several options are possible on a continuum from simply highlighting injected

content without specific provenance information to reporting the full ordered provenance

51

chain from the root to the most recent origin. The first option makes no use of the provenance

chain, while the other end of the spectrum is likely to overwhelm most users with too much

information, degrading the practical usefulness of provenance tracking. We suspect that

a reasonable balance between these two extremes is a summarization of the full chain, for

instance by reporting only the label of the corresponding extension.

Finally, if a user decides that the third-party content modification is unwanted, another

design parameter is how to act upon this decision. Possible actions include blocking specific

element modifications, removing the o�ending extension, or reporting its behavior to a central

authority. We report on the specific design choices we made with respect to provenance

indicators in the presentation of our implementation in Section 4.4.

4.4 Implementation

In this section, we present OriginTracer, our prototype implementation for identifying

and highlighting extension-based web page content modifications. We implemented Ori-

ginTracer as a set of modifications to the Chromium browser1. In particular, we modified

both Blink and the extension engine to track the provenance of content insertion, modifica-

tion, and removal according to the semantics presented in Section 4.3. These modifications

also implement provenance indicators for suspicious content that does not originate from

the publisher. In total, our changes consist of approximately 900 SLOC for C++ and sev-

eral lines of JavaScript2. In the following, we provide more detail on the integration of

OriginTracer into Chromium.

4.4.1 Tracking Publisher Provenance

A core component of OriginTracer is responsible for introducing and propagating proven-

ance label sets for DOM elements. In the following, we discuss the implementation of proven-
1https://github.com/sajjadium/OriginTracer
2SLOC were measured using David Wheeler’s SLOCCount [7].

52

ance tracking for publisher content.

4.4.1.1 Tracking Static Elements

As discussed in Section 4.3, provenance label sets for static DOM elements that comprise

the HTML document sent by the publisher as part of the initial page load are equivalent

to the publisher’s web origin – in our notation, l0. Therefore, minimal modifications to the

HTML parser were necessary to introduce these element annotations, which is performed in

an incremental fashion as the page is parsed.

4.4.1.2 Tracking Dynamic Elements

To track dynamic content modifications, this component of OriginTracer must also mon-

itor JavaScript execution. When a script tag is encountered during parsing of a page, Blink

creates a new element and attaches it to the DOM. Then, Blink obtains the JavaScript code

(fetching it from network in the case of remote script reference), submits the script to the V8

JavaScript engine for execution, and pauses the parsing process until the script execution is

finished. During execution of the script, some new elements might be created dynamically

and inserted into the DOM. According to the provenance semantics, these new elements

inherit the label set of the script. In order to create new elements in JavaScript, one can

i) use DOM APIs to create a new element and attach it to the web page’s DOM, or ii) write

HTML tags directly into the page. In the first method, to create a new element object, a

canonical example is to provide the tag name to the createElement function. Then, other

attributes of the newly created element are set – e.g., after creating an element object for an

a tag, an address must be provided for its href attribute. Finally, the new element should

be attached to the DOM tree as a child using appendChild or insertBefore functions. In

the second method, HTML is inserted directly into the web page using the functions such

as write and writeln, or by modifying the innerHTML attribute. In cases where existing

elements are modified (e.g., changing an image’s src attribute), the element inherits the la-

53

bel set of the currently executing script as well. In order to have a complete mediation of all

DOM modifications to Web page, several classes in Blink implementation were instrumented

in order to assign provenance label sets for newly created or modified elements using the

label set applied to the currently executing script.

4.4.1.3 Handling Events and Timers

An additional consideration for this OriginTracer component is modifications to event

handlers and timer registrations, as developers make heavy use of event and timer callbacks in

modern JavaScript. For instance, such callbacks are used to handle user interface events such

as clicking on elements, hovering over elements, or to schedule code after a time interval has

elapsed. In practice, this requires the registration of callback handlers via addEventListener

API for events, and setTimeout and setInterval for timers. To mediate callbacks related

to the addition and firing of events and timers, we slightly modified the EventTarget and

DOMTimer classes in Blink, respectively. Specifically, we record the mapping between the

running scripts and their registered callback functions, and then recover the responsible

scripts for DOM modification during callback execution.

4.4.2 Tracking Extension Provenance

Chromium’s extension engine is responsible for loading extensions, checking their permissions

against those declared in the manifest file, injecting content scripts, dispatching background

scripts and content scripts to the V8 script engine for execution, and providing a channel

for communication between content scripts and background page.

Chromium extensions can manipulate the web page’s content by injecting content scripts

into the web page or using the webRequest API. Content scripts are JavaScript programs

that can manipulate the web page using the shared DOM, communicate with external servers

via XMLHttpRequest, invoke a limited set of chrome.* APIs, and interact with their owning

extension’s background page. By using webRequest, extensions are also able to modify and

54

block HTTP requests and responses in order to change the web page’s DOM.

In this work, we only track content modifications by content scripts and leave identifying

ad injection by webRequest for future engineering work. Prior work, however, has mentioned

that only 5% of ad injection incidents occurred via webRequest; instead, Chrome extensions

mostly rely on content scripts to inject advertisements [117]. Moreover, with modern websites

becoming more complex, injecting stealthy advertisement into the page using webRequest

is not a trivial task.

4.4.2.1 Tracking Content Script Injection and Execution

To track elements created or modified during the execution of content scripts, extension

engine was modified to hook events corresponding to script injection and execution. Content

scripts can be inserted into the web page using di�erent methods. If a content script should

be injected into every matched web page, it must be registered in the extension manifest

file using the content_scripts field. By providing di�erent options for this field, one can

control when and where the content scripts be injected. Another method is programmatic

injection, which is useful when content scripts should be injected in response to specific

events (e.g., a user clicks the extension’s browser action). With programmatic injection,

content scripts can be injected using the tabs.executeScript API if the tabs permission

is set in the manifest file. Either way, content scripts have a provenance label set initialized

with the extension’s label upon injection.

4.4.2.2 Handling Callback Functions

Chromium’s extension engine provides a messaging API as a communication channel between

the background page and the content scripts. The background page and content scripts can

receive messages from each other by providing a callback function for the onMessage or

onRequest events, and can send messages by invoking sendMessage or sendRequest. To

track the registration and execution of callback functions, the send_request and event

55

modules were slightly modified in the extension engine. Specifically, we added some code to

map registered callbacks to their corresponding content scripts in order to find the extension

responsible for DOM modification.

4.4.3 Content Provenance Indicators

Given DOM provenance information, OriginTracer must first i) identify when suspicious

content modifications – e.g., extension-based ad injection – has occurred, and additionally

ii) communicate this information to the user in an easily comprehensible manner.

To implement the first requirement, our prototype monitors for content modifications

where a subtree of elements are annotated with label sets that contains a particular exten-

sion’s label. This check can be performed e�ciently by traversing the DOM and inspecting

element label sets after a set of changes have been performed on the DOM.

There are several possible options to communicate content provenance as mentioned in

Section 4.3. In our current prototype, provenance is indicated using a configurable border

color of the root element of the suspicious DOM subtree. This border should be chosen to be

visually distinct from the existing color palette of the web page. Finally, a tooltip indicating

the root label is displayed when the user hovers their mouse over the DOM subtree. An

example is shown in Figure 4.3. To implement these features, OriginTracer modifies

style and title attributes. In addition, since OriginTracer highlights elements in an

online fashion, it must delay the addition of highlighting until the element is attached to the

page’s DOM and is displayed. Therefore, modifications were made to the ContainerNode

class that is responsible for attaching new elements to the DOM.

While we did not exhaustively explore the design space of content provenance indicators

in this work (e.g., selective blocking of extension-based DOM modifications), we report on

the usability of the prototype implementation in our evaluation.

56

Figure 4.3: An example of indicator for an injected advertisement on amazon.com website

4.5 Analysis

In this section, we measure the e�ectiveness, usability, and performance of content proven-

ance indicators using the OriginTracer prototype. In particular, the questions we aim to

answer with this evaluation are:

(Q1) How susceptible are users to injected content such as third-party advertisements?

(§4.5.1.1)

(Q2) Do provenance indicators lead to a significant, measurable decrease in the likelihood

of clicking on third-party content that originates from extensions? (§4.5.1.2)

(Q3) Are users likely to use the system during their normal web browsing? (§4.5.2)

(Q4) Does integration of the provenance tracking system significantly degrade the users’

browsing experience and performance of the browser on a representative sample of

websites? (§4.5.3)

Ethics. As part of the evaluation, we performed two experiments involving users una�li-

ated with the project as described below. Due to the potential risk to user confidentiality and

57

privacy, we formulated an experimental protocol that was approved by our university’s insti-

tutional review board (IRB). This protocol included safeguards designed to prevent exposing

sensitive user data such as account names, passwords, personal addresses, and financial in-

formation, as well as to protect the anonymity of the study participants with respect to

data storage and reporting. While users were not initially told the purpose of some of the

experiments, all users were debriefed at the end of each trial as to the true purpose of the

study.

4.5.1 E�ectiveness

Similar to prior work [28], we performed a user study to measure the e�ectiveness of content

provenance in enabling users to more easily identify unwanted third-party content. However,

we performed the user study with a significantly larger group of participants. The study

population was composed of 80 students that represent a range of technical sophistication.

We conducted an initial briefing prior to the experiments where we made it clear that we

were interested in honest answers.

4.5.1.1 User Susceptibility to Ad Injection

The goal of the first phase of the experiment was to measure whether users were able to

detect third-party content that was not intended for inclusion by the publishers of web pages

presented to them. Users were divided into two equal sized groups of 40. In each group,

users were first presented with three unmodified Chromium browsers, each of which had a

separate ad-injecting extension installed: Auto Zoom, Alpha Finder, and X-Notifier for

the first group, and Candy Zapper, uTorrent, and Gethoneybadger for the second group.

These extensions were chosen because they exhibit a range of ad injection behaviors, from

subtle injections that blend into the publisher’s web page to very obvious pop-ups that are

visually distinct from the publisher’s content.

Using each browser, the participants were asked to visit three popular retail websites:

58

(a) Group 1. (b) Group 2.

Figure 4.4: Percentage of injected ads that are reported correctly by all the participants

Amazon, Walmart, and Alibaba. Each ad-injecting extension monitors for visits to these

websites, and each injects three di�erent types of advertisements into these sites. For each

website, we asked the participants to examine the page and tell us if they noticed any content

in the page that did not belong to the website – in other words, whether any content did

not seem to originate from the publisher. For each group, we aggregated the responses and

presented the percentage of correctly reported ad injection incidents for each extension in

Figure 4.4.

The results demonstrate that a significant number of Internet users often do not recognize

when ad injection occurs in the wild, even when told to look for foreign content. For example,

34 participants did not recognize any injected ads out of the three that were added to Amazon

website by Auto Zoom extension. Comparatively more users were able to identify ads injected

by Alpha Finder and X-Notifier. We suspect the reason for this is because these extensions

make use of pop-up advertisements that are easier to recognize as out-of-place. However,

a significant number of users nevertheless failed to note these pop-up ads, and even after

prompting stated that they thought these ads were part of the publisher’s content. More

generally, across all websites and extensions, many participants failed to identify any injected

ads whatsoever.

We then asked each participant whether they would click on ads in general to measure

59

(a) Susceptibility to ad injection (b) Usability of content provenance

(c) Unassisted identification of injected ads (d) Assisted identification of injected ads

Figure 4.5: User study results. For each boxplot, the box represents the boundaries of the
first and third quartiles. The band within each box is the median, while the triangle is the
mean. The whiskers represent 1.5 IQR boundaries, and outliers are represented as a circle

the degree of trust that users put into the contents on the publisher’s page. Specifically, we

asked participants to rate the likelihood of clicking on ads on a scale from one to five, where

one means that they would never click on an ad while five means that they would definitely

click on an ad. We aggregated the responses and present the results in Figure 4.5a.

These results show that a significant number of users, roughly half, would click on advert-

isements that might not originate from the publisher, but that were instead injected by an

extension. This demonstrates the e�ectiveness of ad injection as a mechanism for diverting

revenue from publishers to extension authors. It also shows the potential e�ectiveness of

malicious extensions in using content modifications to expose users to traditional malware.

60

4.5.1.2 E�ectiveness of Content Provenance Indicators

After the first phase of the experiment, we briefly explained the purpose of OriginTracer

and content provenance to the participants. Then, for each participant in each group, we

picked one of the three ad-injecting extensions in which, the participant did not detect most

of the injected ads and installed it on a Chromium instance equipped with OriginTracer.

Then, each participant was asked to visit one of the three retail websites by his choice and

identify third-party content modifications – i.e., injected ads – with the help of provenance

indicators. The results (normalized to [0, 1]) for unassisted and assisted identification of

injected ads are shown in Figure 4.5c and Figure 4.5d, respectively. Unassisted identification

is the aggregated number of reported ad injections without any assistance in the presence

of three ad-injecting extensions across three retail websites, and assisted identification is the

number of reported injected ads with the help of content provenance indicators.

These results clearly imply that users are more likely to recognize the presence of third-

party content modifications using provenance indicators. To confirm statistical significance,

we performed a hypothesis test where the null hypothesis is that provenance indicators do

not assist in identifying third-party content modifications, while the alternative hypothesis

is that provenance indicators do assist in identifying such content. Using a paired t-test, we

obtain a p-value of 4.9199 ◊ 10≠7, su�cient to reject the null hypothesis at a 1% significance

level. The outliers in assisted identification are due to the fact that our ad highlighting

technique was not identifiable by a small number of participants. We believe that using

di�erent visual highlighting techniques would make it easier for users to identify the injected

ads.

Finally, we asked each participant how likely they would be to use the content provenance

system in their daily web browsing. We asked participants to rate this likelihood on a scale

from one to five, where one means they would never use the system and five means that

they would always use it. The results are shown in Figure 4.5b, and indicate that most

users would be willing to use a content provenance system. The reason behind the outliers is

61

because a few of the participants stated that they do not need our system since they would

not click on any advertisements. However, we note that it can be di�cult to distinguish

between advertisements and other legitimate content (e.g., products in retail sites) and,

consequently, users might be lured into clicking on ad content injected by extensions.

4.5.1.3 Summary

From this user study, we draw several conclusions. First, we confirm that in many cases

users are unable to distinguish injected third-party content from publisher content. We also

show that because users place trust in publishers, they will often click on injected ads, and

thus they tend to be susceptible to ad injection. Our data shows that content provenance

assists in helping users distinguish between trusted publisher content and injected third-

party content that should not be trusted. Finally, we show that many users would be willing

to use the system based on their experience in this study.

4.5.2 Usability

We conducted another experiment on a separate population of users to measure the usab-

ility of the OriginTracer prototype. The user population was composed of 13 students

with di�erent technical background. We presented the participants with OriginTracer

integrated into Chromium 43, and asked them to browse the web for several hours, visiting

any websites of their choice. For privacy reasons, however, we asked users to avoid browsing

websites that require a login or that involve sensitive subject matter (e.g., adult or financial

websites). In addition, for each user, we randomly selected 50 websites from the Alexa Top

500 that satisfy our user privacy constraints and asked the user to visit them. In particular,

each participant was asked to browse at least three levels down from the home page and visit

external links contained in each site. Finally, to gain some assurance that OriginTracer

would not break benign extensions, we configured the browser with the five high-profile

extensions list in Table 4.1.

62

During the browsing session, the browser was modified to record the number of URLs

visited. We also asked participants to record the number of pages in which they encountered

one of two types of errors. Type I errors are those where the browser crashed, system error

messages were displayed, pages would not load, or the website was completely unusable for

some other reason. Type II errors include non-catastrophic errors that impact usability but

did not preclude it – e.g., the page took an abnormally long time to load, or the appearance

of the page was not as expected. We also asked users to report any broken functionality for

the benign extensions described above as well.

Out of close to 2,000 URLs, two catastrophic errors and 27 non-catastrophic errors were

encountered. However, we note that the majority of URLs rendered and executed correctly.

In addition, none of the participants reported any broken extensions. We therefore conclude

that the proposed approach is compatible with modern browsers and benign extensions, and

further work would very likely allow the prototype to execute completely free of errors.

4.5.3 Performance

To measure the performance overhead of OriginTracer, we configured both an unmodified

Chromium browser and the prototype to automatically visit the Alexa Top 1K. The Alexa

Top 1K covers many popular websites and is weighted towards being representative of the

sites that people use most often. By using this test set, we ensured that each browser

visited a broad spectrum of websites that include both static and dynamic content, and

especially websites that make heavy use of third-party components and advertisements.

Moreover, we configured both browser instances with the five benign extensions discussed

in Section 4.2 that change the DOM to measure performance in the presence of extensions.

A more detailed evaluation would analyze more pages on these websites to garner a more

realistic representation, but that is beyond the scope of the current work.

We built a crawler based on Selenium [107] to automatically visit the entire list of websites

and recorded the total elapsed time from the beginning of the browsing process until the

63

entire list of websites was visited. Specifically, our crawler moves to the next website in the

list when the current website is fully loaded, signified by the firing of the onload event. In

order to account for fluctuations in browsing time due to network delays and the dynamic

nature of advertisements, we repeated the experiment 10 times and measured the average

elapsed time. The average elapsed time for browsing the home pages of the Alexa Top 1K

websites measured in this way is 3,457 seconds for the unmodified browser and 3,821 seconds

for OriginTracer. Therefore, OriginTracer incurred a 10.5% overhead on browsing

time on average. We also measured the delay imposed by OriginTracer on startup time

by launching the browser 10 times and measuring the average launch time. OriginTracer

did not cause any measurable overhead on startup time.

While this overhead is not insignificant, we note that our user study in Section 4.5.2

indicates that many users would be willing to trade o� actual perceived performance overhead

against the security benefits provided by the system. Moreover, this prototype is just a

proof-of-concept implementation of our system and there is still room for optimizing the

implementation to decrease the page load time.

4.6 Chapter Summary

In this chapter, we evaluated a prototype implementation of web content provenance track-

ing, a modified version of Chromium we call OriginTracer, through a user study that

demonstrated a statistically significant improvement in the ability of users to identify un-

wanted third-party content. Our performance evaluation shows a modest overhead on a

large representative sample of popular websites, while our user experiments indicate that

users are willing to trade o� a slight decrease in performance for more insight into the

sources of web content that they browse. We also performed a comprehensive study on the

content modifications performed by ad-injecting extensions in the wild.

64

Chapter 5

Analysis of Style Injection by Relative

Path Overwrite

5.1 Introduction

Cross-Site Scripting (XSS) [94] attacks are one of the most common threats on the Web.

While XSS has traditionally been understood as the attacker’s capability to inject script

into a site and have it executed by the victim’s web browser, more recent work has shown

that script injection is not a necessary precondition for e�ective attacks. By injecting Cas-

cading Style Sheet (CSS) directives, for instance, attackers can carry out so-called scriptless

attacks [47] and exfiltrate secrets from a site.

The aforementioned injection attacks typically arise due to the lack of separation between

code and data [31], and more specifically, insu�cient sanitization of untrusted inputs in web

applications. While script injection attacks are more powerful than those based on style

injection, they are also more well-known as a threat, and web developers are comparatively

more likely to take steps to make them more di�cult. From an attacker’s point of view,

style injection attacks may be an option in scenarios where script injection is not possible.

There are many existing techniques of how style directives could be injected into a site [47,

65

53]. A relatively recent class of attacks is Relative Path Overwrite (RPO), first proposed

in a blog post by Gareth Heyes [50] in 2014. These attacks exploit the semantic disconnect

between web browsers and web servers in interpreting relative paths (path confusion). More

concretely, in certain settings an attacker can manipulate a page’s URL in such a way that

the web server still returns the same content as for the benign URL. However, using the

manipulated URL as the base, the web browser incorrectly expands relative paths of included

resources, which can lead to resources being loaded despite not being intended to be included

by the developer. Depending on the implementation of the site, di�erent variations of RPO

attacks may be feasible. For example, an attacker could manipulate the URL to make the

page include user-generated content hosted on the same domain [116]. When an injection

vulnerability is present in a page, an attacker could manipulate the URL such that the web

page references itself as the stylesheet, which turns a simple text injection vulnerability into

a style sink [50]. Among these attack instantiations, the latter variant has preconditions

that are comparatively frequently met by sites. Our work focuses on this variant of RPO.

In this chapter, we present the first in-depth study of style injection vulnerability using

RPO. We extract pages using relative-path stylesheets from the Common Crawl dataset [26],

automatically test if style directives can be injected using RPO, and determine whether they

are interpreted by the browser. Out of 31 million pages from 222 thousand Alexa Top 1 M

sites [13] in the Common Crawl that use relative-path stylesheets, we find that 377 k pages

(12 k sites) are vulnerable; 11 k pages on 1 k sites can be exploited in Chrome, and nearly

55 k pages on over 3 k sites can be exploited in Internet Explorer.

The rest of this chapter is organized as follows. Section 5.2 outlines the necessary back-

ground on cross-site scripting, scriptless attacks, and relative path overwrite. Section 5.3

presents the design and implementation of our measurement methodology, while Section 5.4

presents our findings. Finally, we summarize the chapter in Section 5.5.

66

5.2 Background

The general threat model of Relative Path Overwrite (RPO) resembles that of Cross-Site

Scripting (XSS). Typically, the attacker’s goal is to steal sensitive information from a third-

party site or make unauthorized transactions on the site, such as gaining access to confidential

financial information or transferring money out of a victim’s account.

The attacker carries out the attack against the site indirectly, by way of a victim that

is an authorized user of the site. The attacker can trick the victim into following a crafted

link, such as when the victim visits a domain under the attacker’s control and the page

automatically opens the manipulated link, or through search engine poisoning, deceptive

shortened links, or through means of social engineering.

5.2.1 Cross-Site Scripting

Many sites have vulnerabilities that let attackers inject malicious script. Dynamic sites

frequently accept external inputs that can be controlled by an attacker, such as data in

URLs, cookies, or forms. While the site developer’s aim would have been to render the input

as text, lack of proper sanitization can result in the input being executed as script [97].

The inclusion of unsanitized inputs could occur on the server side or client side, and in a

persistent stored or volatile reflected way [94]. To the victim’s web browser, the code appears

as originating from the first-party site, thus it is given full access to the session data in the

victim’s browser. Thereby, the attacker bypasses protections of the Same-Origin Policy.

5.2.2 Scriptless Attacks

Cross-Site Scripting is perhaps the most well-known web-based attack, against which many

sites defend by filtering user input. Client-side security mechanisms such as browser-based

XSS filters [16] and Content Security Policy [110, 120] also make it more challenging for at-

tackers to exploit injection vulnerabilities for XSS. This has led attackers (and researchers)

67

to investigate potential alternatives, such as scriptless attacks. These attacks allow sni�ng

users’ browsing histories [74, 55], exfiltrating arbitrary content [62], reading HTML attrib-

utes [49, 65], and bypassing Clickjacking defenses [49]. In the following, we highlight two

types of scriptless attacks proposed in the literature. Both assume that an attacker cannot

inject or execute script into a site. Instead, the attacker abuses features related to Cascading

Style Sheets (CSS).

Heiderich et al. [47] consider scenarios where an attacker can inject CSS into the context

of the third-party page so that the style directives are interpreted by the victim’s browser

when displaying the page. That is, the injection sink is either located inside a style context,

or the attacker can inject markup to create a style context around the malicious CSS direct-

ives. While the CSS standard is intended for styling and layout purposes such as defining

sizes, colors, or background images and as such does not contain any traditional scripting

capabilities, it does provide some context-sensitive features that, in combination, can be

abused to extract and exfiltrate data. If the secret to be extracted is not displayed, such as

a token in a hidden form field or link URL, the attacker can use the CSS attribute accessor

and content property to extract the secret and make it visible as text, so that style directives

can be applied to it. Custom attacker-supplied fonts can change the size of the secret text

depending on its value. Animation features can be used to cycle through a number of fonts

in order to test di�erent combinations. Media queries or the appearance of scrollbars can

be used to implement conditional style, and data exfiltration by loading a di�erent URL for

each condition from the attacker’s server. Taken together, Heiderich et al. demonstrate that

these techniques allow an attacker to steal credit card numbers or CSRF tokens [96] without

script execution.

Rather than using layout-based information leaks to exfiltrate data from a page, Huang et

al. [53] show how syntactically lax parsing of CSS can be abused to make browsers interpret

an HTML page as a “stylesheet.” The attack assumes that the page contains two injection

sinks, one before and one after the location of the secret in the source code. The attacker

68

injects two CSS fragments such as {}*{background:url(’//attacker.com/? and ’);},

which make the secret a part of the URL that will be loaded from the attacker’s server

when the directive is interpreted. It is assumed that the attacker cannot inject markup,

thus the injected directive is not interpreted as style when the site is conventionally opened

in a browser. However, the CSS standard mandates that browsers be very forgiving when

parsing CSS, skipping over parts they do not understand [119]. In practice, this means that

an attacker can set up a site that loads the vulnerable third-party site as a stylesheet. When

the victim visits the attacker’s site while logged in, the victim’s browser loads the third-

party site and interprets the style directive, causing the secret to be sent to the attacker. To

counter this attack, modern browsers do not load documents with non-CSS content types and

syntax errors as stylesheets when they originate from a di�erent domain than the including

page. Yet, attacks based on tolerant CSS parsing are still feasible when both the including

and the included page are loaded from the same domain. Relative Path Overwrite attacks

can abuse such a scenario [129].

5.2.3 Relative Path Overwrite

Relative Path Overwrite vulnerabilities can occur in sites that use relative paths to include

resources such as scripts or stylesheets. Before a web browser can issue a request for such a re-

source to the server, it must expand the relative path into an absolute URL. For example, as-

sume that a web browser has loaded an HTML document from http://example.com/rpo/test.php

which references a remote stylesheet with the relative path dist/styles.css. Web browsers

treat URLs as file system-like paths, that is, test.php would be assumed to be a file within

the parent directory rpo/, which would be used as the starting point for relative paths,

resulting in the absolute URL http://example.com/rpo/dist/styles.css.

However, the browser’s interpretation of the URL may be very di�erent from how the web

server resolves the URL to determine which resource should be returned to the browser. The

URL may not correspond to an actual server-side file system structure at all, or the web server

69

may internally rewrite parts of the URL. For instance, when a web server receives a request

for http://example.com/rpo/test.php/ with an added trailing slash, it may still return

the same HTML document corresponding to the test.php resource. Yet, to the browser

this URL would appear to designate a directory (without a file name component), thus the

browser would request the stylesheet from http://example.com/rpo/test.php/dist/styles.css.

Depending on the server configuration, this may either result in an error since no such file

exists, or the server may interpret dist/styles.css as a parameter to the script test.php

and return the HTML document. In the latter case, the HTML document includes itself

as a stylesheet. Provided that the document contains a (text) injection vulnerability, at-

tackers can carry out the scriptless attacks; since the stylesheet inclusion is same-origin, the

document load is permitted.

5.2.4 Preconditions for RPO Style Attacks

For the purpose of this work, we focus on a generic type of RPO attack because its precon-

ditions are less specific and are likely met by a larger number of sites. More formally, we

define a page as vulnerable if:

• The page includes at least one stylesheet using a relative path.

• The server is set up to serve the same page even if the URL is manipulated by appending

characters that browsers interpret as path separators.

• The page reflects style directives injected into the URL or cookie. Note that the

reflection can occur in an arbitrary location within the page, and markup or script

injection are not necessary.

• The page does not contain a <base> HTML tag before relative paths that would let

the browser know how to correctly expand them.

70

This attack corresponds to style injection by means of a page that references itself as

a stylesheet (PRSSI). Since the “stylesheet” self-reference is, in fact, an HTML document,

web servers would typically return it with a text/html content type. Browsers in standards-

compliant mode do not attempt to parse documents with a content type other than CSS

even if referenced as a stylesheet, causing the attack to fail. However, web browsers also

support quirks mode for backwards compatibility with non-standards compliant sites [108];

in this mode, browsers ignore the content type and parse the document according to the

inclusion context only.

We define a vulnerable page as exploitable if the injected style is interpreted by the

browser–that is, if an attacker can force browsers to render the page in quirks mode. This

can occur in two alternative ways:

• The vulnerable HTML page specifies a document type that causes the browser to use

quirks mode instead of standards mode. The document type indicates the HTML

version and dialect used by the page; Section 5.4.3.1 provides details on how the major

web browsers interpret the document types we encountered during our study.

• Even if the page specifies a document type that would usually result in standards mode

being used, quirks mode parsing can often be enforced in Internet Explorer [61]. Framed

documents inherit the parsing mode from the parent document, thus an attacker can

create an attack page with an older document type and load the vulnerable page into

a frame. This trick only works in Internet Explorer, however, and it may fail if the

vulnerable page uses any anti-framing technique, or if it specifies an explicit value for

the X-UA-Compatible HTTP header (or equivalent).

Our measurement methodology in Section 5.3 tests how often these preconditions hold

in the wild in order to quantify the vulnerability and exploitability of pages with respect to

RPO attacks.

71

5.3 Methodology

Our methodology consists of three main phases. We seed our system with pages from the

Common Crawl archive to extract candidate pages that include at least one stylesheet using

a relative path. To determine whether these candidate pages are vulnerable, we attempt to

inject style directives by requesting variations of each page’s URL to cause path confusion

and test whether the generated response reflects the injected style directives. Finally, we

test how often vulnerable pages can be exploited by checking whether the reflected style

directives are parsed and used for rendering in a web browser.

Ethics. One ethical concern is that the injected CSS might be stored on the server instead

of being reflected in the response, and it could break sites as a result. We took several

cautionary steps in order to minimize any damaging side e�ects on sites we probed. First,

we did not try to login to the site, and we only tested RPO on the publicly available version

of the page. In addition, we only requested pages by tainting di�erent parts of the URL,

and did not submit any forms. Moreover, we did not click on any button or link in the page

in order to avoid triggering JavaScript events. These steps significantly decrease the chances

that injected CSS will be stored on the server. In order to minimize the damaging side e�ects

in case our injected CSS was stored, the injected CSS is not a valid style directive, and even

if it is stored on the server, it will not have any observable e�ect on the page. In addition,

experiment resulted in the discovery of vulnerable content management systems (CMSes)

used world-wide, and we contacted them so they can fix the issue. We believe the real-world

experiments that we conducted were necessary in order to measure the risk posed by these

vulnerabilities and inform site owners of potential risks to their users.

5.3.1 Candidate Identification

For finding the initial seed set of candidate pages with relative-path stylesheets, we leverage

the Common Crawl from August 2016, which contains more than 1.6 billion pages. By

72

Table 5.1: Sample URL grouping.

Group By URL

Query Parameter http://example.com/?lang=en

http://example.com/?lang=fr

Path Parameter http://example.com/028

http://example.com/142

using an existing dataset, we can quickly identify candidate pages without creating any web

crawl tra�c. We use a Java HTML parser to filter any pages containing only inline CSS or

stylesheets referenced by absolute URLs, leaving us with over 203 million pages on nearly 6

million sites. For scalability purposes, we further reduce the set of candidate pages in two

steps:

1. We retain only pages from sites listed in the Alexa Top 1 million ranking, which reduces

the number of candidate pages to 141 million pages on 223 thousand sites. In doing

so, we bias our result toward popular sites–that is, sites where attacks could have a

larger impact because of the higher number of visitors.

2. We observed that many sites use templates customized through query strings or path

parameters. We expect these templates to cause similar vulnerability and exploitability

behavior for their instantiations, thus we can speed up our detection by grouping URLs

using the same template, and testing only one random representative of each group.

In order to group pages, we replace all the values of query parameters with constants,

and we also replace any number identifier in the path with a constant. We group pages

that have the same abstract URL as well as the same document type in the Common

Crawl dataset. Table 5.1 illustrates this process.

Since our methodology contains a step during which we actively test whether a vulner-

ability can be exploited, we remove from the candidate set all pages hosted on sites in .gov,

.mil, .army, .navy, and .airforce. The final candidate set consists of 137 million pages

(31 million page groups) on 222 thousand sites.

73

5.3.2 Vulnerability Detection

To determine whether a candidate page is vulnerable, we implemented a lightweight crawler

based on the Python Requests API. At a high level, the crawler simulates how a browser

expands relative paths and tests whether style directives can be injected into the resources

loaded as stylesheets using path confusion.

For each page group from the candidate set, the crawler randomly selects one repres-

entative URL and mutates it according to a number of techniques explained below. Each

of these techniques aims to cause path confusion and taints page inputs with a style dir-

ective containing a long unique, random string. The crawler requests the mutated URL

from the server and parses the response document, ignoring resources loaded in frames. If

the response contains a <base> tag, the crawler considers the page not vulnerable since the

<base> tag, if used correctly, can avoid path confusion. Otherwise, the crawler extracts all

relative stylesheet paths from the response and expands them using the mutated URL of

the main page as the base, emulating how browsers treat relative paths (see Section 5.2.3).

The crawler then requests each unique stylesheet URL until one has been found to reflect

the injected style in the response.

The style directive we inject to test for reflection vulnerabilities is shown in the legend

of Figure 5.1. The payload begins with an encoded newline character, as we observed that

the presence of a newline character increases the probability of a successful injection. We

initially use %0A as the newline character, but also test %0C and %0D in case of unsuccessful

injection. The remainder of the payload emulates the syntax of a simple CSS directive and

mainly consists of a randomly generated string used to locate the payload in the body of the

server response. If the crawler finds a string match of the injected unique string, it considers

the page vulnerable.

In the following, we describe the various URL mutation techniques we use to inject

style directives. All techniques also use RPO so that instead of the original stylesheet files,

browsers load di�erent resources that are more likely to contain an injection vulnerability.

74

Conceptually, the RPO approaches we use assume some form of server-side URL rewriting

as described in Section 5.2.3. That is, the server internally resolves a crafted URL to the

same script as the “clean” URL. Under that assumption, the path confusion caused by RPO

would result in the page referencing itself as the stylesheet when loaded in a web browser.

However, this assumption is only conceptual and not necessary for the attack to succeed. For

servers that do not internally rewrite URLs, our mutated URLs likely cause error responses

since the URLs do not correspond to actual files located on these servers. Error responses

are typically HTML documents and may contain injection sinks, such as when they display

the URL of the file that could not be found. As such, server-generated error responses can

be used for the attack in the same way as regular pages.

Our URL mutation techniques di�er in how they attempt to cause path confusion and in-

ject style directives by covering di�erent URL conventions used by a range of web application

platforms.

5.3.2.1 Path Parameter

A number of web frameworks such as PHP, ASP, or JSP can be configured to use URL

schemes that encode script input parameters as a directory-like string following the name of

the script in the URL. Figure 5.1a shows a generic example where there is no parameter in

the URL. Since the crawler does not know the name of valid parameters, it simply appends

the payload as a subdirectory to the end of the URL. In this case, content injection can occur

if the page reflects the page URL or referrer into the response. Note that in the example,

we appended two slashes so that the browser does not remove the payload from the URL

when expanding the stylesheet reference to the parent directory (../style.css). In the

actual crawl, we always appended twenty slashes to avoid having to account for di�erent

numbers of parent directories. We did not observe relative paths using large numbers of ../

to reference stylesheets, thus we are confident that twenty slashes su�ce for our purposes.

Di�erent web frameworks handle path parameters slightly di�erently, which is why we

75

http :// domain /dir/page.asp

http :// domain /dir/page.asp/ PAYLOAD //

http :// domain /dir/page.asp/ PAYLOAD / style.css

(a) Path Parameter (Simple)
http :// domain /page.php/param

http :// domain /page.php/ PAYLOAD param //

http :// domain /page.php/ PAYLOAD param /style.css

(b) Path Parameter (PHP or ASP)
http :// domain /dir/page.jsp;param

http :// domain /dir/page.jsp; PAYLOAD param //

http :// domain /dir/page.jsp; PAYLOAD param/ style.css

(c) Path Parameter (JSP)
http :// domain /dir/page.aspx

http :// domain / PAYLOAD /..%2Fdir/ PAYLOAD /..%2Fpage.aspx //

http :// domain / PAYLOAD /..%2Fdir/ PAYLOAD /..%2Fpage.aspx/ style.css

(d) Encoded Path
http :// domain /dir/page.html?key=value

http :// domain /dir/page.html %3Fkey= PAYLOAD value //

http :// domain /dir/page.html %3Fkey= PAYLOAD value/ style.css

(e) Encoded Query
http :// domain /dir/page.php?key=value

http :// domain /dir/page.php //?key=value

http :// domain /dir/page.php/ style.css

Original Cookie : name=val

Crafted Cookie : name= PAYLOAD val

(f) Cookie

Figure 5.1: Various techniques of path confusion and style injection. In each example, the
first URL corresponds to the regular page, and the second one to the page URL crafted by the
attacker. Each HTML page is assumed to reference a stylesheet at ../style.css, resulting
in the browser expanding the stylesheet path as shown in the third URL. PAYLOAD
corresponds to %0A{}body{background:NONCE} (simplified), where NONCE is a randomly
generated string.

76

distinguish a few additional cases. If parameters are present in the URL, we can distinguish

these cases based on a number of regular expressions that we generated. For example, para-

meters can be separated by slashes (Figure 5.1b, PHP or ASP) or semicolons (Figure 5.1c,

JSP). When the crawler detects one of these known schemes, it injects the payload into each

parameter. Consequently, in addition to URL and referrer reflection, injection can also be

successful when any of the parameters is reflected in the page.

5.3.2.2 Encoded Path

This technique targets web servers such as IIS that decode encoded slashes in the URL

for directory traversal, whereas web browsers do not. Specifically, we use %2F, an encoded

version of ‘/’, to inject our payload into the URL in such a way that the canonicalized URL

is equal to the original page URL (see Figure 5.1d). Injection using this technique succeeds

if the page reflects the page URL or referrer into its output.

5.3.2.3 Encoded Query

Similar to the technique above, we replace the URL query delimiter ‘?’ with its encoded

version %3F so that web browsers do not interpret it as such. In addition, we inject the

payload into every value of the query string, as can be seen in Figure 5.1e. CSS injection

happens if the page reflects either the URL, referrer, or any of the query values in the HTML

response.

5.3.2.4 Cookie

Since stylesheets referenced by a relative path are located in the same origin as the referencing

page, its cookies are sent when requesting the stylesheet. CSS injection may be possible if an

attacker can create new cookies or tamper with existing ones (a strong assumption compared

to the other techniques), and if the page reflects cookie values in the response. As shown

in Figure 5.1f, the URL is only modified by adding slashes to cause path confusion. The

77

payload is injected into each cookie value and sent by the crawler as an HTTP header.

5.3.3 Exploitability Detection

Once a page has been found to be vulnerable to style injection using RPO, the final step is

to verify whether the reflected CSS in the response is evaluated by a real browser. To do so,

we built a crawler based on Google Chrome, and used the Remote Debugging Protocol [11]

to drive the browser and record HTTP requests and responses. In addition, we developed a

Chrome extension to populate the cookie header in CSS stylesheet requests with our payload.

In order to detect exploitable pages, we crawled all the pages from the previous section

that had at least one reflection. Specifically, for each page we checked which of the tech-

niques in Figure 5.1 led to reflection, and crafted the main URL with a CSS payload. The

CSS payload used to verify exploitability is di�erent from the simple payload used to test

reflection. Specifically, the style directive is prefixed with a long sequence of } and] charac-

ters to close any preceding open curly braces or brackets that may be located in the source

code of the page, since they might prevent the injected style directive from being parsed

correctly. The style directive uses a randomly-generated URL to load a background image

for the HTML body. We determine whether the injected style is evaluated by checking the

browser’s network tra�c for an outgoing HTTP request for the image.

5.3.3.1 Overriding Document Types

Reflected CSS is not always interpreted by the browser. One possible explanation is the use

of a modern document type in the page, which does not cause the browser to render the

page in quirks mode. Under certain circumstances, Internet Explorer allows a parent page

to force the parsing mode of a framed page into quirks mode [61]. To test how often this

approach succeeds in practice, we also crawled vulnerable pages with Internet Explorer 11

by framing them while setting X-UA-Compatible to IE=EmulateIE7 via a meta tag in the

attacker’s page.

78

Table 5.2: Narrowing down the Common Crawl to the candidate set used in our analysis
(from left to right)

Relative CSS Alexa Top 1M Candidate Set

All Pages 203,609,675 141,384,967 136,793,450
Tested Pages 53,725,270 31,448,446 30,991,702
Sites 5,960,505 223,212 222,443
Doc. Types 9,833 2,965 2,898

5.3.4 Limitations

RPO is a class of attacks and our methodology covers only a subset of them. We target RPO

for the purpose of style injection using an HTML page referencing itself (or, accidentally, an

error page) as the stylesheet. In terms of style injection, our crawler only looks for reflection,

not stored injection of style directives. Furthermore, manual analysis of a site might reveal

more opportunities for style injection that our crawler fails to detect automatically.

For e�ciency reasons, we seed our analysis with an existing Common Crawl dataset.

We do not analyze the vulnerability of pages not contained in the Common Crawl seed,

which means that we do not cover all sites, and we do not fully cover all pages within a

site. Consequently, the results presented in this paper should be seen as a lower bound. If

desired, our methodology can be applied to individual sites in order to analyze more pages.

5.4 Analysis

For the purposes of our analysis, we gradually narrow down the seed data from the Common

Crawl to pages using relative style paths in the Alexa Top 1 M, reflecting injected style

directives under RPO, and being exploitable due to quirks mode rendering.

Table 5.2 shows a summary of our dataset. Tested Pages refers to the set of randomly

selected pages from the page groups as discussed in Section 5.3.1. For brevity, we are referring

to Tested Pages wherever we mention pages in the remainder of the paper.

79

0-10 10-100 100-1K 1K-10K 10K-100K 100K-1M
Alexa Rank

0

10

20

30

40

50

60

70

%
of

S
it
es

Candidate Set

Vulnerable

Exploitable

Figure 5.2: Percentage of the Alexa site ranking in our candidate set (exponentially increasing
bucket size).

5.4.1 Relative Stylesheet Paths

To assess the extent to which our Common Crawl-seeded candidate set covers sites of di�erent

popularity, consider the hatched bars in Figure 5.2. Six out of the ten largest sites according

to Alexa are represented in our candidate set. That is, they are contained in the Common

Crawl, and have relative style paths. The figure shows that our candidate set contains a

higher fraction of the largest sites and a lower fraction of the smaller sites. Consequently,

our results better represent the most popular sites, which receive most visitors, and most

potential victims of RPO attacks.

While all the pages in the candidate set contain at least one relative stylesheet path,

Figure 5.3 shows that 63.1 % of them contain multiple relative paths, which increases the

chances of finding a successful RPO and style injection point.

80

100 101 102

of Relative Stylesheets

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Pages

Sites

Figure 5.3: CDF of total and maximum number of relative stylesheets per web page and
site, respectively.

5.4.2 Vulnerable Pages

We consider a candidate page vulnerable if one of the style injection techniques of Sec-

tion 5.3.2 succeeds. In other words, the server’s response should reflect the injected payload.

Furthermore, we conservatively require that the response not contain a base tag since a

correctly configured base tag can prevent path confusion.

Table 5.3 shows that 1.2 % of pages are vulnerable to at least one of the injection tech-

niques, and 5.4 % of sites contain at least one vulnerable page. The path parameter technique

is most e�ective against pages, followed by the encoded query and the encoded path tech-

niques. Sites that are ranked higher according to Alexa are more likely to be vulnerable, as

shown in Figure 5.2, where vulnerable and exploitable sites are relative to the candidate set

in each bucket. While one third of the candidate set in the Top 10 (two out of six sites) is

vulnerable, the percentage oscillates between 8 and 10 % among the Top 100 k. The candid-

81

Table 5.3: Vulnerable pages and sites in the candidate set

Technique Pages Sites

Path Parameter 309,079 (1.0%) 9,136 (4.1%)
Encoded Path 53,502 (0.2%) 1,802 (0.8%)
Encoded Query 89,757 (0.3%) 1,303 (0.6%)
Cookie 15,656 (<0.1%) 1,030 (0.5%)

Total 377,043 (1.2%) 11,986 (5.4%)

ate set is dominated by the smaller sites in the ranks between 100 k and 1 M, which have a

vulnerability rate of 4.9 % and push down the average over the entire ranking.

A base tag in the server response can prevent path confusion because it indicates how the

browser should expand relative paths. We observed a number of inconsistencies with respect

to its use. At first, 603 pages on 60 sites contained a base tag in their response; however,

the server response after injecting our payload did not contain the tag anymore, rendering

these pages potentially exploitable. Furthermore, Internet Explorer’s implementation of the

base tag appears to be broken. When such a tag is present, Internet Explorer fetches two

URLs for stylesheets—one expanded according to the base URL specified in the tag, and

one expanded in the regular, potentially “confused” way of using the page URL as the base.

In our experiments, Internet Explorer always applied the “confused” stylesheet, even when

the one based on the base tag URL loaded faster. Consequently, base tags do not appear

to be an e�ective defense against RPO in Internet Explorer (They seem to work as expected

in other browsers, including Edge).

5.4.3 Exploitable Pages

To test whether a vulnerable page was exploitable, we opened it in Chrome, injected a

style payload with an image reference (randomly generated URL), and checked if the image

was indeed loaded. This test succeeded for 2.9 % of vulnerable pages; 0.5 % of sites in the

candidate set had at least one exploitable page (Table 5.4).

In the following, we explore various factors that may impact whether a vulnerable page

82

Table 5.4: Exploitable pages and sites in the candidate set (IE using framing)

Technique
Chrome Internet Explorer

Pages Sites Pages Sites

Path Parameter 6,048 (<0.1%) 1,025 (0.5%) 52,344 (0.2%) 3,433 (1.5%)
Encoded Path 3 (<0.1%) 2 (<0.1%) 24 (<0.1%) 5 (<0.1%)
Encoded Query 23 (<0.1%) 20 (<0.1%) 137 (<0.1%) 43 (<0.1%)
Cookie 4,722 (<0.1%) 81 (<0.1%) 2,447 (<0.1%) 238 (0.1%)

Total 10,781 (<0.1%) 1,106 (0.5%) 54,853 (0.2%) 3,645 (1.6%)

Table 5.5: Quirks mode document types by browser

Browser Version OS Doc. Types

Chrome 55 Ubuntu 16.04 1,378 (31.9 %)
Opera 42 Ubuntu 16.04 1,378 (31.9 %)
Safari 10 macOS Sierra 1,378 (31.9 %)

Firefox 50 Ubuntu 16.04 1,326 (30.7 %)

Edge 38 Windows 10 1,319 (30.5 %)
IE 11 Windows 7 1,319 (30.5 %)

can be exploited, and we show how some of these partial defenses can be bypassed.

5.4.3.1 Document Types

HTML document types play a significant role in RPO-based style injection attacks because

browsers typically parse resources with a non-CSS content type in a CSS context only when

the page specifies an ancient or non-standard HTML document type (or none at all). The

pages in our candidate set contain a total of 4,318 distinct document types. However, the ma-

jority of these unique document types are not standardized and di�er from the standardized

ones only by small variations, such as forgotten spaces or misspellings.

To determine how browsers interpret these document types (i.e., whether they cause

them to render a page in standards or quirks mode), we designed a controlled experiment.

For each unique document type, we set up a local page with a relative stylesheet path and

carried out an RPO attack to inject CSS using a payload similar to what we described in

Section 5.3.3. We automatically opened the local page in Chrome, Firefox, Edge, Internet

Explorer, Safari, and Opera, and we kept track of which document type caused the injected

83

Table 5.6: Most frequent document types causing all browsers to render in quirks mode, as
well as the sites that use at least one such document type

Doc. Type (shortened) Pages Sites

(none) 1,818,595 (5.9 %) 56,985 (25.6 %)
"-//W3C//DTD HTML 4.01 Transitional//EN" 721,884 (2.3 %) 18,648 (8.4 %)
"-//W3C//DTD HTML 4.0 Transitional//EN" 385,656 (1.2 %) 11,566 (5.2 %)
"-//W3C//DTD HTML 3.2 Final//EN" 22,019 (<0.1 %) 1,175 (0.5 %)
"-//W3C//DTD HTML 3.2//EN" 10,839 (<0.1 %) 927 (0.4 %)

All 3,046,449 (9.6 %) 71,597 (32.2 %)

CSS to be parsed and the injected background image to be downloaded.

Table 5.5 contains the results of this experiment. Even though the exact numbers vary

among browsers, roughly a third of the unique document types we encountered result in

quirks mode rendering. Not surprisingly, both Microsoft products Edge and Internet Ex-

plorer exhibit identical results, whereas the common Webkit ancestry of Chrome, Opera,

and Safari also show identical results. Overall, 1,271 (29.4 %) of the unique document types

force all the browsers into quirks mode, whereas 1,378 (31.9 %) of them cause at least one

browser to use quirks mode rendering. Table 5.6 shows the most frequently used document

types that force all the browsers into quirks mode, which includes the absence of a document

type declaration in the page.

To test how often Internet Explorer allows a page’s document type to be overridden

when loading it in an iframe, we created another controlled experiment using a local attack

page framing the victim page, as outlined in Section 5.3.3. Using Internet Explorer 11, we

loaded our local attack page for each unique document type inside the frame, and tested

if the injected CSS was parsed. While Internet Explorer parsed the injected CSS for 1,319

(30.5 %) of the document types in the default setting, the frame override trick caused CSS

parsing for 4,248 (98.4 %) of the unique document types.

While over one thousand document types result in quirks mode, and around three thou-

sand document types cause standards mode parsing, the number of document types that

have been standardized is several orders of magnitude smaller. In fact, only a few (standard-

84

100 101 102 103

Doc. Type Rank

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

#
of

S
it
es

Quirks Mode

Standard Mode

Figure 5.4: Number of sites containing at least one page with a certain document type
(ordered by doctype rank).

Table 5.7: Summary of document type usage in sites

Doc. Type At Least One Page All Pages

None 56,985 (25.6%) 19,968 (9.0%)
Quirks 27,794 (12.5%) 7,720 (3.5%)
None or Quirks 71,597 (32.2%) 30,040 (13.5%)

Standards 192,403 (86.5%) 150,846 (67.8%)

ized) document types are used frequently in pages, whereas the majority of unique document

types are used very rarely. Figure 5.4 shows that only about ten standards and quirks mode

document types are widely used in sites. Furthermore, only about 9.6 % of pages in the

candidate set use a quirks mode document type; on the remaining pages, potential RPO

style injection vulnerabilities cannot be exploited because the CSS would not be parsed (un-

less Internet Explorer is used). However, when grouping pages in the candidate set by site,

32.2 % of sites contain at least one page rendered in quirks mode (Table 5.7), which is one

of the preconditions for successful RPO.

85

5.4.3.2 Internet Explorer Framing

We showed above that by loading a page in a frame, Internet Explorer can be forced to

disregard a standards mode document type that would prevent interpretation of injected

style. To find out how often this technique can be applied for successful RPO attacks, we

replicated our Chrome experiment in Internet Explorer, this time loading each vulnerable

page inside a frame. Around 14.5 % of vulnerable pages were exploitable in Internet Explorer,

five times more than in Chrome (1.6 % of the sites in the candidate set as shown in Table 5.4).

Figure 5.2 shows the combined exploitability results for Chrome and Internet Explorer

according to the rank of the site. While our methodology did not find any exploitable

vulnerability on the six highest-ranked sites in the candidate set, between 1.6 % and 3.2 %

of candidate sites in each remaining bucket were found to be exploitable. The highest

exploitability rate occurred in the ranks 1 k through 10 k.

Broken down by injection technique, the framing trick in Internet Explorer results in more

exploitable pages for each technique except for cookie injection (Table 5.4). One possible

explanation for this di�erence is that the Internet Explorer crawl was conducted one month

after the Chrome crawl, and sites may have changed in the meantime. Furthermore, we

observed two additional impediments to successful exploitation in Internet Explorer that

do not apply to Chrome. The framing technique is susceptible to frame-busting methods

employed by the framed pages, and Internet Explorer implements an anti-MIME-sni�ng

header that Chrome appears to ignore. We analyze these issues below.

5.4.3.3 Anti-Framing Techniques

Some sites use a range of techniques to prevent other pages from loading them in a frame [105].

One of these techniques is the X-Frame-Options header. It accepts three di�erent values:

DENY, SAMEORIGIN, and ALLOW-FROM followed by a whitelist of URLs.

In the vulnerable dataset, 4,999 pages across 391 sites use this header correctly and as a

result prevent the attack. However, 1,900 pages across 34 sites provide incorrect values for

86

this header, and we successfully attack 552 pages on 2 sites with Internet Explorer.

A related technique is the frame-ancestors directive provided by Content Security

Policy. It defines a (potentially empty) whitelist of URLs allowed to load the current page

in a frame, similar to ALLOW-FROM. However, it is not supported by Internet Explorer, thus

it cannot be used to prevent the attack.

Furthermore, developers may use JavaScript code to prevent framing of a page. Yet,

techniques exist to bypass this protection [95]. In addition, the attacker can use the HTML

5 sandbox attribute in the iframe tag and omit the allow-top-navigation directive to

render JavaScript frame-busting code ine�ective. However, we did not implement any of

these techniques to allow framing, which means that more vulnerable pages could likely be

exploited in practice.

5.4.3.4 MIME Sni�ng

A consequence of self-reference in the type of RPO studied in this paper is that the HTTP

content type of the fake “stylesheet” is text/html rather than the expected text/css.

Because many sites contain misconfigured content types, many browsers attempt to infer

the type based on the request context or file extension (MIME sni�ng), especially in quirks

mode. In order to ask the browser to disable content sni�ng and refuse interpreting data

with an unexpected or wrong type, sites can set the header X-Content-Type-Options:

nosniff [14, 60, 83].

To determine whether the injected CSS is still being parsed and executed in presence

of this header while the browser renders in quirks mode, we ran an experiment similar to

Section 5.4.3.1. For each browser in Table 5.5, we extracted the document types in which

the browser renders in quirks mode, and for each of them, we set up a local page with a

relative stylesheet path. We then opened the page in the browser, launched an RPO attack,

and monitored if the injected CSS was executed.

Only Firefox, Internet Explorer, and Edge respected this header and did not interpret

87

injected CSS in any of the quirks mode document types. The remaining browsers did not

block the stylesheet even though the content type was not text/css. With an additional

experiment, we confirmed that Internet Explorer blocked our injected CSS payload when

nosniff was set, even in the case of the framing technique.

Out of all the vulnerable pages, 96,618 pages across 232 sites had a nosniff response

header; 23 pages across 10 sites were confirmed exploitable in Chrome but not in Internet

Explorer, since the latter browser respects the header while the former does not.

5.4.4 Content Management Systems

While analyzing the exploitable pages in our dataset, we noticed that many appeared to be-

long to well-known CMSes. Since these web applications are typically installed on thousands

of sites, fixing RPO weaknesses in these applications could have a large impact.

To identify CMSes, we visited all exploitable pages using Wappalyzer [122]. Additionally,

we detected two CMSes that were not supported by Wappalyzer. Overall, we identified 23

CMSes on 41,288 pages across 1,589 sites. Afterwards, we manually investigated whether

the RPO weakness stemmed from the CMS by installing the latest version of each CMS (or

using the online demo), and testing whether exploitable paths found in our dataset were also

exploitable in the CMS. After careful analysis, we confirmed four CMSes to be exploitable

in their most recent version that are being used by 40,255 pages across 1,197 sites.

Out of the four exploitable CMSes, one declares no document type and one uses a quirks

mode document type. These two CMSes can be exploited in Chrome, whereas the remaining

two can be exploited with the framing trick in Internet Explorer. Beyond the view of our

Common Crawl candidate set, Wappalyzer detected nearly 32 k installations of these CMSes

across the Internet, which suggests that many more sites could be attacked with RPO. We

reported the RPO weaknesses to the vendors of these CMSes using recommended notification

techniques [70, 112, 21]. Thus far, we heard back from one of the vendors, who acknowledged

the vulnerability and are going to take the necessary steps to fix the issue. However, we have

88

not received any response from the other vendors.

5.4.5 Mitigation Techniques

Relative path overwrites rely on the web server and the web browser interpreting URLs

di�erently. HTML pages can use only absolute (or root-relative) URLs, which removes the

need for the web browser to expand relative paths. Alternatively, when the HTML page

contains a <base> tag, browsers are expected to use the URL provided therein to expand

relative paths instead of interpreting the current document’s URL. Both methods can remove

ambiguities and render RPO impossible if applied correctly. Specifically, base URLs must

be set according to the server’s content routing logic. If developers choose to calculate base

URLs dynamically on the server side rather than setting them manually to constant values,

there is a risk that routing-agnostic algorithms could be confused by manipulated URLs and

re-introduce attack opportunities by instructing browsers to use an attacker-controlled base

URL. Furthermore, Internet Explorer does not appear to implement this tag correctly.

Web developers can reduce the attack surface of their sites by eliminating any injection

sinks for strings that could be interpreted as a style directive. However, doing so is challenging

because in the attack presented in this paper, style injection does not require a specific sink

type and does not need the ability of injecting markup. Injection can be accomplished

with relatively commonly used characters, that is, alphanumeric characters and (){}/".

Experience has shown that despite years of e�orts, even context-sensitive and more special

character-intensive XSS injection is still possible in many sites, which leads us to believe that

style injection will be similarly di�cult to eradicate. Even when all special characters in user

input are replaced by their corresponding HTML entities and direct style injection is not

possible, more targeted RPO attack variants referencing existing files may still be feasible.

For instance, it has been shown that user uploads of seemingly benign profile pictures can

be used as “scripts” (or stylesheets) [116].

Instead of preventing RPO and style injection vulnerabilities, the most promising ap-

89

proach could be to avoid exploitation. In fact, declaring a modern document type that

causes the HTML document to be rendered in standards mode makes the attack fail in

all browsers except for Internet Explorer. Web developers can harden their pages against

the frame-override technique in Internet Explorer by using commonly recommended HTTP

headers: X-Content-Type-Options to disable “content type sni�ng” and always use the

MIME type sent by the server (which must be configured correctly), X-Frame-Options to

disallow loading the page in a frame, and X-UA-Compatible to turn o� Internet Explorer’s

compatibility view.

5.5 Chapter Summary

In this chapter, we showed that over 5 % of sites in the intersection of the Common Crawl

and the Alexa Top 1M are vulnerable to at least one injection technique. While the number

of exploitable sites depends on the browser and is much smaller in relative terms, it is still

consequential in absolute terms with thousands of a�ected sites. RPO is a class of attacks,

and our automated crawler tested for only a subset of conceivable attacks. Therefore, the

results of our study should be seen as a lower bound; the true number of exploitable sites is

likely higher.

90

Chapter 6

Conclusion

In this thesis, I developed three systems to measure and reduce the security risks of con-

tent inclusions for website publishers as well as their users. More importantly, our novel

techniques are complementary to the existing defenses and users can browse websites with

a higher confidence.

In chapter 3, we presented Excision as a complementary system to other defensive

approaches such as CSP and Google Safe Browsing. Excision incrementally constructs an

inclusion tree for a given web page and automatically prevents loading malicious resources

by classifying their inclusion sequences using a set of pre-built models. Excision detected

a significant number of malicious third-party content in the wild and was also able to detect

previously unknown malicious inclusions while not impacting users’ browsing experience

negatively.

In chapter 4, we introduced fine-grained web content provenance tracking and demon-

strated its use for identifying unwanted third-party content (e.g., injected advertisements)

through OriginTracer, our prototype implementation. Due to the highly interconnected

structure of the web and the oftentimes obscure nature of its trust relationships, we believe

that surfacing this information in the form of provenance is a generally useful capability, and

can be applied in other novel ways in order to lead to safer and more informed web browsing.

91

Our evaluation suggests that OriginTracer can be used as a complementary system to

ad blocking systems such as AdblockPlus [2] and Ghostery [5].

In chapter 5, we presented a systematic study of style injection by relative path overwrite

(RPO) in the wild. We discussed a range of factors that prevent a vulnerability from being

exploited, and found that simple countermeasures exist to mitigate RPO. We also linked

many exploitable pages to installations of Content Management Systems (CMSes), and no-

tified the vendors. Compared to XSS, it is much more challenging to avoid injection of style

directives. Yet, developers have at their disposal a range of simple mitigation techniques

that can prevent their sites from being exploited in web browsers.

6.1 Publications

This thesis is written based on the following three published papers:

• Chapter 3: Sajjad Arshad, Amin Kharraz, William Robertson, Include Me Out:

In-Browser Detection of Malicious Third-Party Content Inclusions, Financial Crypto-

graphy and Data Security (FC), 2016 1

• Chapter 4: Sajjad Arshad, Amin Kharraz, William Robertson, Identifying Extension-

based Ad Injection via Fine-grained Web Content Provenance, Research in Attacks,

Intrusions and Defenses (RAID), 2016 2

• Chapter 5: Sajjad Arshad, Seyed Ali Mirheidari, Tobias Lauinger, Bruno Crispo,

Engin Kirda, William Robertson, Large-Scale Analysis of Style Injection by Relative

Path Overwrite, The Web Conference (WWW), 2018

Our inclusion tree crawler has also been evolving, called DeepCrawling3, and was utilized

in topics such as tracking and privacy, and web security:
1https://github.com/sajjadium/Excision
2https://github.com/sajjadium/OriginTracer
3https://github.com/sajjadium/DeepCrawling

92

• Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, Christo Wilson, Tra-

cing Information Flows Between Ad Exchanges Using Retargeted Ads, USENIX Se-

curity Symposium, 2016 4

• Muhammad Ahmad Bashir, Sajjad Arshad, Christo Wilson, Recommended For You: A

First Look at Content Recommendation Networks, ACM Internet Measurement Con-

ference (IMC), 2016 5

• Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo

Wilson, Engin Kirda, Thou Shalt Not Depend on Me: Analysing the Use of Outdated

JavaScript Libraries on the Web, Network and Distributed System Security Symposium

(NDSS), 2017 6

• Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, Christo

Wilson, How Tracking Companies Circumvented Ad Blockers Using WebSockets, ACM

Internet Measurement Conference (IMC), 2018

The author has also been involved with topics other than web security including malware

detection and binary analysis:

• Amin Kharraz, Sajjad Arshad, Collin Muliner, William Robertson, Engin Kirda, UN-

VEIL: A Large-Scale, Automated Approach to Detecting Ransomware, USENIX Se-

curity Symposium, 2016

• Reza Mirzazade farkhani, Saman Jafari, Sajjad Arshad, William Robertson, Engin

Kirda, Hamed Okhravi, On the Effectiveness of Type-based Control Flow Integrity,

Annual Computer Security Applications Conference (ACSAC), 2018 7

4http://personalization.ccs.neu.edu/Projects/Retargeting/
5http://personalization.ccs.neu.edu/Projects/Recommended/
6https://seclab.ccs.neu.edu/static/projects/javascript-libraries/
7https://github.com/sajjadium/typed-cfi

93

Bibliography

[1] The ad injection economy. http://googleonlinesecurity.blogspot.com/2015/05/

new-research-ad-injection-economy.html.

[2] Adblock Plus. https://adblockplus.org/.

[3] ADsafe. http://www.adsafe.org/.

[4] CSP in Content Scripts. https://developer.chrome.com/extensions/

contentSecurityPolicy#interactions.

[5] Ghostery. https://www.ghostery.com/en/.

[6] PhantomJS. http://phantomjs.org/.

[7] SLOCCount. http://www.dwheeler.com/sloccount/.

[8] VirtusTotal. https://www.virustotal.com/.

[9] Cross-Origin Resource Sharing (CORS). http://www.w3.org/TR/cors/, 2014.

[10] Content Security Policy 1.1. https://dvcs.w3.org/hg/content-security-policy/

raw-file/tip/csp_specification.dev.html, 2015.

[11] Chrome remote debugging protocol. https://chromedevtools.github.io/

devtools-protocol/, 2018.

94

http://googleonlinesecurity.blogspot.com/2015/05/new-research-ad-injection-economy.html
http://googleonlinesecurity.blogspot.com/2015/05/new-research-ad-injection-economy.html
https://adblockplus.org/
http://www.adsafe.org/
https://developer.chrome.com/extensions/contentSecurityPolicy#interactions
https://developer.chrome.com/extensions/contentSecurityPolicy#interactions
https://www.ghostery.com/en/
http://phantomjs.org/
http://www.dwheeler.com/sloccount/
https://www.virustotal.com/
http://www.w3.org/TR/cors/
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp_specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp_specification.dev.html
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/

[12] Steven Van Acker, Nick Nikiforakis, Lieven Desmet, Wouter Joosen, and Frank Pies-

sens. FlashOver: Automated discovery of cross-site scripting vulnerabilities in rich

internet applications. In ACM Symposium on Information, Computer and Communic-

ations Security (ASIACCS), 2012.

[13] Alexa. Top sites. http://www.alexa.com/topsites, 2016.

[14] Adam Barth, Juan Caballero, and Dawn Song. Secure content sni�ng for web browsers,

or how to stop papers from reviewing themselves. In IEEE Symposium on Security

and Privacy (S&P), 2009.

[15] Adam Barth, Collin Jackson, Charles Reis, and The Google Chrome Team. The

security architecture of the chromium browser. Technical report, 2008.

[16] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered harm-

ful in client-side xss filters. In International World Wide Web Conference (WWW),

2010.

[17] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and Yuan

Tian. Run-time monitoring and formal analysis of information flows in Chromium. In

Network and Distributed System Security Symposium (NDSS), 2015.

[18] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPOSURE:

Finding malicious domains using passive DNS analysis. In Network and Distributed

System Security Symposium (NDSS), 2011.

[19] Prithvi Bisht and V. N. Venkatakrishnan. XSS-GUARD: Precise dynamic prevention of

cross-site scripting attacks. In Detection of Intrusions and Malware, and Vulnerability

Assessment (DIMVA), 2008.

[20] Burp Suite. https://portswigger.net/burp/, 2017.

95

http://www.alexa.com/topsites
https://portswigger.net/burp/

[21] Orcun Cetin, Carlos Ganan, Maciej Korczynski, and Michel van Eeten. Make noti-

fications great again: Learning how to notify in the age of large-scale vulnerability

scanning. In Workshop on the Economics of Information Security (WEIS), 2017.

[22] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing confidentiality and

integrity in web applications. In USENIX Security Symposium, 2007.

[23] Devin Coldewey. Marriott puts an end to shady ad

injection service. http://techcrunch.com/2012/04/09/

marriott-puts-an-end-to-shady-ad-injection-service/, 2012.

[24] Devin Coldewey. Marriott puts an end to shady ad

injection service. http://techcrunch.com/2012/04/09/

marriott-puts-an-end-to-shady-ad-injection-service/, 2012.

[25] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis of

drive-by-download attacks and malicious JavaScript code. In International World Wide

Web Conference (WWW), 2010.

[26] Common Crawl. https://commoncrawl.org/, August 2016.

[27] Soroush Dalili. Non-root-relative path overwrite (RPO) in IIS and

.Net applications. https://soroush.secproject.com/blog/2015/02/

non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/,

2015.

[28] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (CHI), 2006.

[29] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in JavaScript-based

browser extensions. In Annual Computer Security Applications Conference (ACSAC),

2009.

96

http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/
http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/
http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/
http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/
https://commoncrawl.org/
https://soroush.secproject.com/blog/2015/02/non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/
https://soroush.secproject.com/blog/2015/02/non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/

[30] Xinshu Dong, Minh Tran, Zhenkai Liang, and Xuxian Jiang. AdSentry: Comprehens-

ive and flexible confinement of JavaScript-based advertisements. In Annual Computer

Security Applications Conference (ACSAC), 2011.

[31] Adam Doupe, Weidong Cui, Mariusz H. Jakubowski, Marcus Peinado, Christopher

Kruegel, and Giovanni Vigna. deDacota: Toward preventing server-side XSS via auto-

matic code and data separation. In ACM Conference on Computer and Communica-

tions Security (CCS), 2013.

[32] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cli� Frey, David Ziegler,

Eddie Kohler, David Mazieres, Frans Kaashoek, and Robert Morris. Labels and event

processes in the asbestos operating system. In ACM Symposium on Operating Systems

Principles (SOSP), 2005.

[33] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song. Dynamic

spyware analysis. In USENIX Annual Technical Conference (ATC), 2007.

[34] Adrienne Porter Felt, Kate Greenwood, and David Wagner. The e�ectiveness of

application permissions. In USENIX Conference on Web Application Development

(WebApps), 2011.

[35] Matthew Finifter, Joel Weinberger, and Adam Barth. Preventing capability leaks in

secure JavaScript subsets. In Network and Distributed System Security Symposium

(NDSS), 2010.

[36] Ashish Gehani and Dawood Tariq. SPADE: Support for provenance auditing in dis-

tributed environments. In International Middleware Conference, 2012.

[37] Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Mazieres, John C.

Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web ap-

plications. In USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 2012.

97

[38] Omer Gil. Web cache deception attack. In Black Hat USA, 2017.

[39] Omer Gil. Web cache deception attack. http://omergil.blogspot.com/2017/02/

web-cache-deception-attack.html, 2017.

[40] Google, Inc. Google Safe Browsing API. https://developers.google.com/

safe-browsing/, 2015.

[41] Chris Grier, Shuo Tang, and Samuel T. King. Secure web browsing with the OP web

browser. In IEEE Symposium on Security and Privacy (Oakland), 2008.

[42] Salvatore Guarnieri and Benjamin Livshits. GATEKEEPER: Mostly static enforce-

ment of security and reliability policies for JavaScript code. In USENIX Security

Symposium, 2009.

[43] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy. Verified se-

curity for browser extensions. In IEEE Symposium on Security and Privacy (Oakland),

2011.

[44] Andreas Harth, Axel Polleres, and Stefan Decker. Towards a social provenance model

for the web. In Workshop on Principles of Provenance (PrOPr), 2007.

[45] Olaf Hartig. Provenance information in the web of data. In Workshop on Linked Data

on the Web (LDOW), 2009.

[46] Ragib Hasan, Radu Sion, and Marianne Winslett. SPROV 2.0: A highly configurable

platform-independent library for secure provenance. In ACM Conference on Computer

and Communications Security (CCS), 2009.

[47] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk.

Scriptless attacks - stealing the pie without touching the sill. In ACM Conference on

Computer and Communications Security (CCS), 2012.

98

http://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
http://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/

[48] Mario Heiderich, Christopher Späth, and Jörg Schwenk. Dompurify: Client-side pro-

tection against xss and markup injection. In European Conference on Research in

Computer Security (ESORICS), 2017.

[49] Gareth Heyes. The sexy assassin: Tactical exploitation using CSS. https:

//docs.google.com/viewer?url=www.businessinfo.co.uk/labs/talk/The_Sexy_

Assassin.ppt, 2009.

[50] Gareth Heyes. RPO. http://www.thespanner.co.uk/2014/03/21/rpo/, 2014.

[51] Boniface Hicks, Sandra Rueda, Dave King, Thomas Moyer, Joshua Schi�man, Yogesh

Sreenivasan, Patrick McDaniel, and Trent Jaeger. An architecture for enforcing end-

to-end access control over web applications. In ACM Symposium on Access Control

Models and Technologies (SACMAT), 2010.

[52] Lin-Shung Huang, Zack Weinberg, Chris Evans, and Collin Jackson. Protecting

browsers from cross-origin CSS attacks. In Proceedings of the ACM Conference on

Computer and Communications Security (CCS), 2010.

[53] Lin-Shung Huang, Zack Weinberg, Chris Evans, and Collin Jackson. Protecting

browsers from cross-origin CSS attacks. In ACM Conference on Computer and Com-

munications Security (CCS), 2010.

[54] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis, Niels Provos,

Moheeb Abu Rajab, and Kurt Thomas. Trends and lessons from three years fighting

malicious extensions. In USENIX Security Symposium, 2015.

[55] Artur Janc and Lukasz Olejnik. Feasibility and real-world implications of web browser

history detection. In Web 2.0 Security and Privacy (W2SP), 2010.

99

https://docs.google.com/viewer?url=www.businessinfo.co.uk/labs/talk/The_Sexy_Assassin.ppt
https://docs.google.com/viewer?url=www.businessinfo.co.uk/labs/talk/The_Sexy_Assassin.ppt
https://docs.google.com/viewer?url=www.businessinfo.co.uk/labs/talk/The_Sexy_Assassin.ppt
http://www.thespanner.co.uk/2014/03/21/rpo/

[56] Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalan, and Steve J. Chapin.

ESCUDO: A fine-grained protection model for web browsers. In 30th IEEE Interna-

tional Conference on Distributed Computing Systems (ICDCS), 2010.

[57] John P. John, Fang Yu, Yinglian Xie, Arvind Krishnamurthy, and Martin Abadi.

deSEO: Combating search-result poisoning. In USENIX Security Symposium, 2011.

[58] Alexandros Kapravelos, Chris Grier, Neha Chachra, Chris Kruegel, Giovanni Vigna,

and Vern Paxson. Hulk: Eliciting malicious behavior in browser extensions. In USENIX

Security Symposium, 2014.

[59] Christoph Kern. Securing the tangled web. Communications of the ACM, 57, no.

9:38–47, 2014.

[60] Christoph Kerschbaumer. Mitigating MIME confusion attacks

in firefox. https://blog.mozilla.org/security/2016/08/26/

mitigating-mime-confusion-attacks-in-firefox/, 2016.

[61] James Kettle. Detecting and exploiting path-relative stylesheet import (PRSSI) vul-

nerabilities. http://blog.portswigger.net/2015/02/prssi.html, 2015.

[62] Masato Kinugawa. CSS based attack: Abusing unicode-range of @font-face. http://

mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html, 2015.

[63] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cli�er, M. Frans Kaashoek,

Eddie Kohler, and Robert Morris. Information flow control for standard os abstrac-

tions. In Symposium on Operating Systems Principles (SOSP), 2007.

[64] Greg Kumparak. Real evil: ISP inserted advertising. http://techcrunch.com/2007/

06/23/real-evil-isp-inserted-advertising/, 2007.

[65] Sebastian Lekies. How to bypass CSP nonces with DOM XSS. http://sirdarckcat.

blogspot.com/2016/12/how-to-bypass-csp-nonces-with-dom-xss.html, 2016.

100

https://blog.mozilla.org/security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox/
https://blog.mozilla.org/security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox/
http://blog.portswigger.net/2015/02/prssi.html
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://techcrunch.com/2007/06/23/real-evil-isp-inserted-advertising/
http://techcrunch.com/2007/06/23/real-evil-isp-inserted-advertising/
http://sirdarckcat.blogspot.com/2016/12/how-to-bypass-csp-nonces-with-dom-xss.html
http://sirdarckcat.blogspot.com/2016/12/how-to-bypass-csp-nonces-with-dom-xss.html

[66] Sebastian Lekies, Krzysztof Kotowicz, Samuel Grob, Eduardo A. Vela Nava, and Mar-

tin Johns. Code-reuse attacks for the web: Breaking cross-site scripting mitigations

via script gadgets. In ACM Conference on Computer and Communications Security

(CCS), 2017.

[67] Sebastian Lekies, Krzysztof Kotowicz, and Eduardo Vela Nava. Breaking xss mitiga-

tions via script gadgets. In Black Hat USA, 2017.

[68] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later - large-scale

detection of DOM-based XSS. In ACM Conference on Computer and Communications

Security (CCS), 2013.

[69] David D. Lewis. Naive (bayes) at forty: The independence assumption in information

retrieval. In European Conference on Machine Learning (ECML), 1998.

[70] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey, Damon

McCoy, Stefan Savage, and Vern Paxson. You’ve got vulnerability: Exploring e�ective

vulnerability notifications. In USENIX Security Symposium, 2016.

[71] Zhou Li, Sumayah Alrwais, Yinglian Xie, Fang Yu, and XiaoFeng Wang. Finding the

linchpins of the dark web: a study on topologically dedicated hosts on malicious web

infrastructures. In IEEE Symposium on Security and Privacy (Oakland), 2013.

[72] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. Knowing your

enemy: Understanding and detecting malicious web advertising. In ACM Conference

on Computer and Communications Security (CCS), 2012.

[73] Zhuowei Li, XiaoFeng Wang, and Jong Youl Choi. SpyShield: Preserving privacy from

spy add-ons. In International Conference on Recent Advances in Intrusion Detection

(RAID), 2007.

101

[74] Bin Liang, Wei You, Liangkun Liu, Wenchang Shi, and Mario Heiderich. Scriptless

timing attacks on web browser privacy. In IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), 2014.

[75] Lei Liu, Xinwen Zhang, Guanhua Yan, and Songqing Chen. Chrome extensions: Threat

analysis and countermeasures. In Network and Distributed System Security Symposium

(NDSS), 2012.

[76] Nera W. C. Liu and Albert Yu. Ultimate DOM based XSS detection scanner on cloud.

In Black Hat Asia, 2014.

[77] Mike Ter Louw, Karthik Thotta Ganesh, and V.N. Venkatakrishnan. AdJail: Practical

enforcement of confidentiality and integrity policies on web advertisements. In USENIX

Security Symposium, 2010.

[78] Mike Ter Louw, Jin Soon Lim, and V. N. Venkatakrishnan. Enhancing web browser

security against malware extensions. Journal in Computer Virology, 4(3):179–195,

2008.

[79] Mike Ter Louw and V.N. Venkatakrishnan. BLUEPRINT: Robust prevention of cross-

site scripting attacks for existing browsers. In IEEE Symposium on Security and Pri-

vacy (S&P), 2009.

[80] Sergio Ma�eis and Ankur Taly. Language-based isolation of untrusted JavaScript. In

IEEE Computer Security Foundations Symposium (CSF), 2009.

[81] Giorgio Maone. NoScript. https://noscript.net/, 2009.

[82] Ginny Marvin. Google study exposes "tangled web" of companies profiting from ad

injection. http://marketingland.com/ad-injector-study-google-127738, 2015.

[83] MDN. X-Content-Type-Options. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Headers/X-Content-Type-Options, 2018.

102

https://noscript.net/
http://marketingland.com/ad-injector-study-google-127738
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

[84] Leo A. Meyerovich and Benjamin Livshits. ConScript: Specifying and enforcing fine-

grained security policies for JavaScript in the browser. In IEEE Symposium on Security

and Privacy (Oakland), 2010.

[85] Microsoft. Understanding the compatibility view list. https://msdn.microsoft.com/

en-us/library/gg699485(v=vs.85).aspx, 2015.

[86] Luc Moreau. The foundations for provenance on the web. Foundations and Trends in

Web Science, 2(2–3):99–241, February 2010.

[87] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Sym-

posium on Principles of Programming Languages (POPL), 1999.

[88] Yacin Nadji, Prateek Saxena, and Dawn Song. Document structure integrity: A ro-

bust basis for cross-site scripting defense. In Network and Distributed System Security

Symposium (NDSS), 2009.

[89] Yacin Nadji, Prateek Saxena, and Dawn Song. Document structure integrity: A ro-

bust basis for cross-site scripting defense. In Network and Distributed System Security

Symposium (NDSS), 2009.

[90] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad. WebWit-

ness: Investigating, categorizing, and mitigating malware download paths. In USENIX

Security Symposium, 2015.

[91] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter

Joosen, Christopher Kruegel, Frank Piessens, , and Giovanni Vigna. You are what you

include: Large-scale evaluation of remote JavaScript inclusions. In ACM Conference

on Computer and Communications Security (CCS), 2012.

[92] Nick Nikiforakis, Federico Maggi, Gianluca Stringhini, M Rafique, Wouter Joosen,

Christopher Kruegel, Frank Piessens, Giovanni Vigna, and Stefano Zanero. Stranger

103

https://msdn.microsoft.com/en-us/library/gg699485(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/gg699485(v=vs.85).aspx

danger: Exploring the ecosystem of ad-based URL shortening services. In International

World Wide Web Conference (WWW), 2014.

[93] Terri Oda, Glenn Wurster, P. C. van Oorschot, and Anil Somayaji. SOMA: Mutual

approval for included content in web pages. In ACM Conference on Computer and

Communications Security (CCS), 2008.

[94] OWASP. Cross-site scripting (XSS). https://www.owasp.org/index.php/

Cross-site_Scripting_(XSS), 2016.

[95] OWASP. Clickjacking defense cheat sheet. https://www.owasp.org/index.php/

Clickjacking_Defense_Cheat_Sheet, 2017.

[96] OWASP. Cross-site request forgery (csrf) prevention cheat sheet. https://www.owasp.

org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet,

2017.

[97] OWASP. XSS (cross site scripting) prevention cheat sheet. https://www.owasp.org/

index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet, 2017.

[98] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight self-protecting JavaS-

cript. In ACM Symposium on Information, Computer, and Communications Security

(ASIACCS), 2009.

[99] Devin J. Pohly, Stephen McLaughlin, and Kevin Butler. Hi-Fi: Collecting high-fidelity

whole-system provenance. In Annual Computer Security Applications Conference (AC-

SAC), 2012.

[100] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2):257–285, 1989.

[101] Babak Rahbarinia, Roberto Perdisci, and Manos Antonakakis. Segugio: E�cient

behavior-based tracking of new malware-control domains in large isp networks. In

104

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),

2015.

[102] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir.

BrowserShield: Vulnerability-driven filtering of dynamic HTML. In USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI), 2006.

[103] Charles Reis, Steven D. Gribble, Tadayoshi Kohno, and Nicholas C. Weaver. Detecting

in-flight page changes with web Tripwires. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2008.

[104] David Ross. IE 8 XSS filter architecture / implementa-

tion. https://blogs.technet.microsoft.com/srd/2008/08/19/

ie-8-xss-filter-architecture-implementation/, 2008.

[105] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. Busting frame

busting: a study of clickjacking vulnerabilities on popular sites. In IEEE Oakland Web

2.0 Security and Privacy (W2SP), 2010.

[106] Mike Samuel, Prateek Saxena, and Dawn Song. Context-sensitive auto-sanitization in

web templating languages using type qualifiers. In ACM Conference on Computer and

Communications Security (CCS), 2011.

[107] Selenium Contributors. Selenium: Web browser automation. http://www.

seleniumhq.org/.

[108] Henri Sivonen. Activating browser modes with doctype. https://hsivonen.fi/

doctype/, 2013.

[109] Sooel Son and Vitaly Shmatikov. The postman always rings twice: Attacking and de-

fending postMessage in HTML5 websites. In Network and Distributed System Security

Symposium (NDSS), 2013.

105

https://blogs.technet.microsoft.com/srd/2008/08/19/ie-8-xss-filter-architecture-implementation/
https://blogs.technet.microsoft.com/srd/2008/08/19/ie-8-xss-filter-architecture-implementation/
http://www.seleniumhq.org/
http://www.seleniumhq.org/
https://hsivonen.fi/doctype/
https://hsivonen.fi/doctype/

[110] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with content

security policy. In International World Wide Web Conference (WWW), 2010.

[111] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns. Pre-

cise client-side protection against DOM-based cross-site scripting. In USENIX Security

Symposium, 2014.

[112] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael Backes.

Hey, you have a problem: On the feasibility of large-scale web vulnerability notification.

In USENIX Security Symposium, 2016.

[113] Brett Stone-Gross, Ryan Stevens, Richard Kemmerer, Christopher Kruegel, Giovanni

Vigna, and Apostolis Zarras. Understanding fraudulent activities in online ad ex-

changes. In Internet Measurement Conference (IMC), 2011.

[114] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Shady paths: Lever-

aging surfing crowds to detect malicious web pages. In ACM Conference on Computer

and Communications Security (CCS), 2013.

[115] Shuo Tang, Haohui Mai, and Samuel T. King. Trust and protection in the Illinois

browser operating system. In USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2010.

[116] Takeshi Terada. A few RPO exploitation techniques. https://www.mbsd.jp/

Whitepaper/rpo.pdf, 2015.

[117] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros

Kapravelos, Damon McCoy, Antonio Nappa, Vern Paxson, Paul Pearce, Niels Provos,

and Moheeb Abu Rajab. Ad injection at scale: Assessing deceptive advertisement

modifications. In IEEE Symposium on Security and Privacy (Oakland), 2015.

106

https://www.mbsd.jp/Whitepaper/rpo.pdf
https://www.mbsd.jp/Whitepaper/rpo.pdf

[118] Minh Tran, Xinshu Dong, Zhenkai Liang, and Xuxian Jiang. Tracking the trackers:

Fast and scalable dynamic analysis of web content for privacy violations. In Proceedings

of the 10th international conference on Applied Cryptography and Network Security

(ACNS), pages 418–435, 2012.

[119] W3C. Css syntax and basic data types. http://www.w3.org/TR/CSS2/syndata.html,

2011.

[120] W3C. Content security policy level 2. https://www.w3.org/TR/CSP2/, 2015.

[121] Helen J. Wang, Chris Grier, Alexander Moshchuk, Samuel T. King, Piali Choudhury,

and Herman Venter. The multi-principal OS construction of the Gazelle web browser.

In USENIX Security Symposium, 2009.

[122] Wappalyzer. Identify technologies on websites. https://www.wappalyzer.com/, 2017.

[123] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. Csp is

dead, long live csp! on the insecurity of whitelists and the future of content security

policy. In ACM Conference on Computer and Communications Security (CCS), 2016.

[124] Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Richard Shin,

and Dawn Song. An empirical analysis of XSS sanitization in web application frame-

works. In European Conference on Research in Computer Security (ESORICS), 2011.

[125] Michael Weissbacher, Tobias Lauinger, and William Robertson. Why is CSP fail-

ing? trends and challenges in CSP adoption. In International Conference on Recent

Advances in Intrusion Detection (RAID), 2014.

[126] World Wide Web Consortium (W3C). What is the document object model? http:

//www.w3.org/TR/DOM-Level-2-Core/introduction.html.

[127] Xinyu Xing, Wei Meng, Udi Weinsberg, Anmol Sheth, Byoungyoung Lee, Roberto

Perdisci, and Wenke Lee. Unraveling the relationship between ad-injecting browser

107

http://www.w3.org/TR/CSS2/syndata.html
https://www.w3.org/TR/CSP2/
https://www.wappalyzer.com/
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html

extensions and malvertising. In International World Wide Web Conference (WWW),

2015.

[128] XSS Jigsaw. CSS: Cascading style scripting. http://blog.innerht.ml/

cascading-style-scripting/, 2015.

[129] XSS Jigsaw. RPO gadgets. http://blog.innerht.ml/rpo-gadgets/, 2016.

[130] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz, Chris-

topher Kruegel, and Giovanni Vigna. The dark alleys of madison avenue: Understand-

ing malicious advertisements. In Proceedings of the Internet Measurement Conference

(IMC), 2014.

[131] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazieres. Security distributed

systems with information flow control. In USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2008.

108

http://blog.innerht.ml/cascading-style-scripting/
http://blog.innerht.ml/cascading-style-scripting/
http://blog.innerht.ml/rpo-gadgets/

	Introduction
	Thesis Contributions
	Thesis Structure

	Related Work
	Content Isolation and Containment
	Blacklisting Malicious Domains
	Browser Extension Security
	Provenance Tracking
	Relative Path Overwrite
	Client-side Attacks

	Detection of Malicious Third-Party Content Inclusions
	Introduction
	Background
	Threats
	Motivation

	Design
	Inclusion Trees and Sequences
	Inclusion Sequence Classification
	Classification Features

	Implementation
	Enhancements to the Blink
	Enhancements to the Extension Engine

	Analysis
	Data Collection
	Building Labeled Datasets
	Detection Results
	Comparison with URL Scanners
	Performance
	Usability

	Discussion
	Chapter Summary

	Identifying Ad Injection in Browser Extensions
	Introduction
	Background
	Browser Extensions
	Advertisement Injection
	Motivation

	Design
	Content Provenance
	Content Provenance Indicators

	Implementation
	Tracking Publisher Provenance
	Tracking Extension Provenance
	Content Provenance Indicators

	Analysis
	Effectiveness
	Usability
	Performance

	Chapter Summary

	Analysis of Style Injection by Relative Path Overwrite
	Introduction
	Background
	Cross-Site Scripting
	Scriptless Attacks
	Relative Path Overwrite
	Preconditions for RPO Style Attacks

	Methodology
	Candidate Identification
	Vulnerability Detection
	Exploitability Detection
	Limitations

	Analysis
	Relative Stylesheet Paths
	Vulnerable Pages
	Exploitable Pages
	Content Management Systems
	Mitigation Techniques

	Chapter Summary

	Conclusion
	Publications

	Bibliography

