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Content Inclusion on the Web
➔ Websites include various types of content to create interactive user interfaces

◆ JavaScript
◆ Cascading Style Sheets (CSS)

➔ 93% of the most popular websites include JavaScript from external sources
◆ JavaScript libraries are hosted on fast content delivery networks (CDNs)
◆ Integration with advertising networks, analytics frameworks, and social media

➔ Browser extensions enhance browsers with additional capabilities
◆ Fine-grained filtering of content
◆ Access cross-domain content
◆ Perform network requests
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Security Risks
➔ Malvertising by third-party content

◆ Launch drive-by downloads
◆ Redirect visitors to phishing sites
◆ Generate fraudulent clicks on ads
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Malvertising
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Security Risks
➔ Malvertising by third-party content

◆ Launch drive-by downloads
◆ Redirect visitors to phishing sites
◆ Generate fraudulent clicks on ads

➔ Ad(vertisement) injection by browser extensions
◆ Divert revenue from content publishers
◆ Harm the reputation of the publisher from the user’s perspective
◆ Expose users to malware and phishing
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Ad(vertisement) Injection
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Security Risks
➔ Malvertising by third-party content

◆ Launch drive-by downloads
◆ Redirect visitors to phishing sites
◆ Generate fraudulent clicks on ads

➔ Ad(vertisement) injection by browser extensions
◆ Divert revenue from content publishers
◆ Harm the reputation of the publisher from the user’s perspective
◆ Expose users to malware and phishing

➔ Style injection by relative path overwrite (RPO)
◆ Sniffing users’ browsing histories
◆ Exfiltrate secrets from the website
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Thesis Contributions
In this thesis, I investigate the feasibility and effectiveness of novel 
approaches to understand and mitigate the security risks of content 
inclusion for website publishers as well as their users. I show that 
our novel techniques are complementary to the existing defenses.

➔ Detection of Malicious Third-Party Content Inclusions ⇒ Excision
➔ Identifying Ad Injection in Browser Extensions ⇒ OriginTracer
➔ Analysis of Style Injection by Relative Path Overwrite (RPO)
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Excision
Detection of Malicious

Third-Party Content Inclusions
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Third-Party Content Defenses
➔ Same-origin policy (SOP)
➔ iframe-based isolation
➔ Language-based isolation
➔ Policy enforcement
➔ Content Security Policy (CSP)
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Content Security Policy
Content-Security-Policy: default-src 'self'; script-src: js.trusted.com

➔ Access control policy sent by web apps, enforced by browsers
➔ Whitelist of allowed origins to load resource from
➔ ISPs and browser extensions modify CSP rules
➔ Non-trivial to deploy

◆ Ad syndication or real-time ad auctions
◆ Arbitrary third-party resource inclusion by Browser extensions
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Excision
Block malicious content automatically before it attacks the browser
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Inclusion Tree
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Inclusion Sequence Classification
Goal: Given trained models, label inclusion sequences as either 
benign or malicious

➔ Hidden Markov Models (HMM)
◆ Model inter-dependencies between resources in the sequence
◆ Trained one HMM for the benign class and one for the malicious class
◆ 20 states that are fully connected

➔ Training HMM is computationally expensive, but computing the 
likelihood of a sequence is instead very efficient
◆ Good choice for real-time classification
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Classification Features
R0 → R1 → … → Rn ⇒ [F0, …, F24] → [F0, …, F24] → … → [F0, …, F24]

➔ Convert the inclusion sequence into sequence of feature vectors
➔ 12 feature types from three categories (DNS, String, Role)

◆ Compute individual and relative features for each type (24 features)
◆ Continuous features are normalized on [0-1] and discretized

➔ Continuous relative feature values are computed by comparing the 
individual value of the resource to its parent's individual value
◆ less, equal, or more
◆ none for the root resource
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DNS Features
➔ Domain Level

◆ www.google.com has level 2
◆ Divide by maximum allowed levels (126)

➔ Alexa Ranking
◆ Divide the ranking by 1M

➔ Top-level Domain (TLD)
➔ Host Type
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DNS Features (TLD)
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DNS Features (Type)
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String Features
➔ Non-alphabetic characters
➔ Unique characters
➔ Character frequency
➔ Length
➔ Entropy
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Role Features
➔ Three binary features

◆ Ad network
◆ Content delivery network (CDN)
◆ URL shortening service

➔ Manually compiled list
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Implementation
➔ Modifications to Chromium browser

◆ Blink
◆ Extension Engine

➔ ~1,000 SLoC (C++) and several lines of JavaScript
➔ Tracking the start and termination of JavaScript execution
➔ Tracking content scripts injection and execution
➔ Tracks network requests
➔ Callbacks registered for events and timers
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Data Collection
➔ Alexa Top 200K from June 2014 to May 2015
➔ Alexa Top 20 shopping sites with 292 ad-injecting extensions for one 

week in June 16th-22nd, 2015
➔ Anti-cloaking
➔ Anti-fingerprinting
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Building Labeled Dataset

➔ Trained classifiers using VirusTotal as ground truth
◆ host is reported malicious by at least 3 out of the 62 URL scanners
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Detection Results
➔ 10-fold cross-validation

◆ FP ⇒ 0.59%
◆ FN ⇒ 6.61%

➔ Features effectiveness
◆ D ⇒ DNS
◆ S ⇒ String
◆ R ⇒ Role
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Comparison with URL Scanners
➔ Compared detection results on new data from June 1 to July 14, 2015
➔ Found 89 suspicious hosts that were likely dedicated redirectors

◆ 44% were recently registered in 2015
◆ 23% no longer resolve to an IP address

➔ Detected 177 new malicious hosts later reported in VT
◆ 78% of the malicious hosts were not reported during the first week
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Early Detection
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Performance
➔ Automatically visited the Alexa Top 1K with original and modified 

Chromium browsers for 10 times
➔ Installed 5 popular Chrome extensions

◆ Adblock Plus, Google Translate, Google Dictionary, Evernote 
WebClipper, and Tampermonkey

➔ Average 12.2% page latency overhead
➔ 3.2 seconds delay on browser startup time
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Usability
➔ 10 students that self-reported as expert Internet users
➔ Each participant explored 50 random websites from Alexa Top 500

◆ Excluded websites requiring a login or involving sensitive subject matter
➔ Out of 5,129 web pages visited:

◆ 31 malicious inclusions
◆ 83 errors (mostly high latency resource loads)

➔ No broken extension was reported
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OriginTracer
Identifying Ad Injection in

Browser Extensions
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Ad Injection
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Ad Injection
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Motivation
➔ Centralized dynamic analysis is non-trivial

◆ Hiding behaviors during the analysis time, triggering ad injection
➔ Third-party content injection or modification is quite common
➔ Non-trivial to delineate between wanted and unwanted behavior

Users are best positioned to make this judgment
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OriginTracer
OriginTracer adds fine-grained content provenance tracking to the 
web browser

➔ Provenance tracked at level of individual DOM elements
➔ Indicates origins contributing to content injection and modification
➔ Trustworthy communication of this information to the user
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Provenance Labels
➔ Labels are generalizations of web origins
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Label Propagation
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Provenance Indicators
Provenance must be communicated to the user in a trustworthy and 
an easy-to-comprehend way
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Implementation
➔ Modifications to Chromium browser
➔ ~900 SLoC (C++), several lines of JavaScript
➔ Mediates DOM APIs for node creation and modification
➔ Mediates node insertion through document writes
➔ Callbacks registered for events and timers
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User Study Setup
➔ Study population: 80 students of varying technical sophistication
➔ Participants exposed to six Chromium instances (unmodified and 

modified), each with an ad-injecting extension installed
◆ Auto Zoom, Alpha Finder, X-Notifier, Candy Zapper, uTorrent, 

Gethoneybadger
➔ Participants were asked to visit three retail websites

◆ Amazon, Walmart, Alibaba
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Reported Injected Ads
Are users able to correctly recognize injected advertisements?
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Susceptibility to Ad Injection
Are users generally willing to click on the advertisements presented 

to them?
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Ability to Identify Injected Ads
Do content provenance indicators assist users in recognizing 

injected advertisements?
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Usability of Content Provenance
Would users be willing to adopt a provenance tracking system to 

identify injected advertisements?
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Performance
➔ Configured an unmodified Chromium and OriginTracer instance to 

visit the Alexa Top 1K
◆ Broad spectrum of static and dynamic content on most-used websites
◆ Browsers configured with five benign extensions

➔ Average 10.5% browsing latency overhead
➔ No impact on browser start-up time
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Usability
➔ Separate user study on 13 students of varying technical background
➔ Asked participants to browse 50 websites out of Alexa Top 500
➔ Asked users to report errors

◆ Type I: browser crash, page doesn’t load, etc.
◆ Type II: abnormal load time, page appearance not as expected

➔ Out of almost 2K URLs, two Type I and 27 Type II errors were 
reported

➔ No broken extensions was reported
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Analysis of Style Injection by
Relative Path Overwrite (RPO)
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Relative Path Overwrite (RPO)
➔ Browser’s interpretation of URL may be different than the web server

◆ Browsers basically treat URLs as file system-like paths
◆ However, URL may not correspond to an actual server-side file system structure, 

or web server may internally rewrite parts of the URL
➔ RPO exploits the semantic disconnect between browsers and web servers in 

interpreting relative paths ⇒ path confusion
◆ Injects style (CSS) instead of script (JS)
◆ Turns a simple text injection vulnerability into a style sink
◆ “Self-reference”: Attacked document uses “itself” as stylesheet

➔ Threat model of RPO resembles that of XSS
◆ e.g., steal sensitive information
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Path Confusion

      Web Page: http://example.com/dir/page.php
 Relative Style: files/style.css
Absolute Style: http://example.com/dir/files/style.css
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Path Confusion

      Web Page: http://example.com/dir/page.php
 Relative Style: files/style.css
Absolute Style: http://example.com/dir/files/style.css

      Web Page: http://example.com/dir/page.php/
 Relative Style: files/style.css
Absolute Style: http://example.com/dir/page.php/files/style.css
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Style Injection
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Style Injection
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Self-reference
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Self-reference
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Self-reference
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Self-reference
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Scriptless (Style-based) Attacks
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➔ Script injection is NOT always possible
◆ Input sanitization
◆ Browser-based XSS filters
◆ Content Security Policy (CSP)

➔ Successful attacks are possible by injecting CSS
◆ Exfiltrating credit card number and CSRF tokens (Heiderich et al., CCS 2012)

● CSS attribute accessor, content property, animation features, media queries

➔ Attacks typically consist of payload & injection technique
➔ Our work is not concerned about the payload

◆ Focus on how to inject (“transport”) the payload



      Preconditions for Successful Attack
1. Relative stylesheet path (no base tag) ⇒ Candidate Identification
2. Crafted URL causes style reflection in server response ⇒ 

Vulnerability Detection
3. Browser loads and interprets injected style directives ⇒ Exploitability 

Detection
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Candidate Identification
➔ Common Crawl: extract pages with relative stylesheet path

◆ August 2016: >1.6B documents
◆ 203 M pages on nearly 6 M sites

➔ Filter 1: Alexa Top 1 million ranking
◆ 141 M pages on 223 K sites

➔ Filter 2: Group URLs using the same template
◆ Test only one random URL from each group
◆ 137 M pages on 222 K sites
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Vulnerability Detection
➔ Developed a lightweight crawler based on Python Requests API

◆ Randomly selects one representative URL from each group
◆ Mutates the URL according to a number of path confusion techniques

● PAYLOAD ⇒ %0A{}body{background:NONCE}
◆ Requests the mutated URL
◆ Ignores the response if it contains <base> tag
◆ Extracts all relative stylesheet paths and expands them using the mutated URL
◆ requests each expanded stylesheet URL to find injected payload in the response
◆ Page would be vulnerable if at least one stylesheet’s response reflects the requested URL, 

referrer URL, parameters, or cookie
➔ Path confusion techniques

◆ Path Parameter, Encoded Path, Encoded Query, Cookie
◆ We assume the page references relative stylesheet path ../style.css
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Path Confusion - Path Parameter
➔ Some web frameworks (e.g., PHP, ASP, JSP) accept the input parameters as 

a directory-like string following the name of the script in the URL
➔ Simply appends the payload as a subdirectory to the end of the URL
➔ CSS injection occurs if the page reflects page URL or referrer in the response
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Path Confusion - Path Parameter
➔ Different web frameworks handle path parameters differently, which is why we 

distinguish a few additional cases
◆ parameters separated by slashes in PHP/ASP and semicolons in JSP
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Path Confusion - Encoded Path
➔ This targets web servers such as IIS that decode encoded slashes in the URL 

for directory traversal, whereas web browsers DO NOT
➔ Use %2F, an encoded version of ‘/’, to inject our payload into the URL
➔ The canonicalized URL is equal to the original page URL
➔ CSS injection occurs if the page reflects page URL or referrer in the response
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Path Confusion - Encoded Query
➔ We replace the URL query delimiter ‘?’ with its encoded version %3F so that 

web browsers DO NOT interpret it as such
➔ We inject the payload into every value of the query string
➔ CSS injection happens if the page reflects either the URL, referrer, or any of 

the query values in the HTML response
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Path Confusion - Cookie
➔ Stylesheets referenced by a relative path are located in the same origin

◆ Cookies are sent when requesting the stylesheet
➔ CSS injection may be possible if:

◆ Attacker can create new cookies or tamper with existing ones, and
◆ The page reflects cookie values in the response

➔ Payload is injected into each cookie value
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Exploitability Detection

➔ Verify whether the reflected CSS in the response is evaluated by the browser
◆ Built a crawler based on Google Chrome (and an extension for tainting cookie)

➔ Visit mutated vulnerable pages to check if injected style directives interpreted
◆ PAYLOAD ⇒ %0A}}}]]]{}body{background-image:url(/NONCE.gif)}
◆ Style is interpreted if injected image URL seen in network traffic

➔ Reflected CSS is not always interpreted by the browser
◆ Use of modern document types ⇒ browser doesn’t render page in quirks mode

➔ Overriding document types in Internet Explorer (IE)
◆ Load the page inside an iframe in Internet Explorer
◆ Used Fiddler for tainting cookies and recording HTTP requests/responses
◆ Turn on Compatibility View by setting “X-UA-Compatible” to “IE=EmulateIE7” via <meta> tag in 

the parent page
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Limitations
➔ We only looked for reflected, not stored, injection of style directives
➔ Manual analysis of a site might reveal more opportunities for style injection 

that our crawler fails to detect automatically
➔ We did not analyze the vulnerability of pages not in Common Crawl

◆ We do not cover all sites, and we do not fully cover all pages within a site
➔ Results presented in this paper should be seen as a lower bound
➔ Our methodology can be applied to individual sites to analyze more pages
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Dataset
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Alexa Ranking
➔ Six out of the ten largest sites are 

represented in our candidate set
➔ Candidate set contains a higher 

fraction of the largest sites and a 
lower fraction of the smaller sites

➔ Our results better represent the 
most popular sites, which receive 
most visitors, and most potential 
victims of RPO attacks
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Relative Stylesheet Paths
➔ CDF of total and maximum number 

of relative stylesheets per web page 
and site, respectively

➔ 63.1% of the pages contain multiple 
relative paths
◆ Increases the chances of finding a 

successful RPO and style injection 
point
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Vulnerability Analysis
➔ A page is vulnerable if its response:

◆ Reflects the injected CSS
◆ Does not contain a base tag

➔ 1.2% of pages are vulnerable to at 
least one of the injection techniques

➔ 5.4% of sites contain at least one 
vulnerable page

➔ Path parameter is the most effective 
technique against pages

➔ One third of the sites in Alexa Top 10, 
8-10% in the Top 100K, and 4.9% in 
100K-1M are vulnerable
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Base Tag
➔ Correctly configured base tag can prevent path confusion
➔ Base tag was removed after path confusion in 603 pages on 60 sites
➔ Internet Explorer fetches two URLs for stylesheet

◆ One expanded according to the base URL specified in the tag
◆ One expanded using the page URL as the base

➔ Internet Explorer always applied the “confused” stylesheet, even when the 
one based on the base tag URL loaded faster
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     Quirks Mode Doc. Types
➔ Browsers parse resources with a 

non-CSS content type when the page 
specifies a non-standard document type 
(or none at all)

➔ Total of 4,318 distinct doc. Types
➔ Roughly a third result in quirks mode

◆ 1,271 (29.4%) force all the browsers 
into quirks mode

◆ 1,378 (31.9%) cause at least one 
browser to use quirks mode

➔ Internet Explorer’s framing trick forced 
4,248 (98.4%) into quirks mode
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Standardized Doc. Types
➔ ~1K doc. types result in quirks mode
➔ ~3K doc. types cause standards mode
➔ But, number of standardized doc. types is 

several orders of magnitude smaller
◆ Only about 10 standards and quirks mode 

doc. types are widely used in sites
◆ Majority are not standardized
◆ Differ from the standardized ones only by 

small variations such as forgotten spaces or 
misspellings

➔ 9.6% of pages use quirks modes
➔ 32.2% of sites contain at least one page 

rendered in quirks mode
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Exploitability Analysis
➔ Vulnerable pages that were exploitable

◆ 2.9% in Chrome
◆ 14.5% in Internet Explorer

● 5x more than in Chrome

➔ 6 highest-ranked sites were not exploitable
◆ Between 1.6% and 3.2% of sites in the 

remaining buckets were exploitable
➔ IE is more effective except in cookie

◆ IE crawl was conducted one month later 
◆ Anti-framing techniques
◆ Anti-MIME-sniffing header
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Anti-Framing
1. X-Frame-Options response header (DENY, SAMEORIGIN, or ALLOW-FROM)

◆ 4,999 vulnerable pages on 391 sites used it correctly and prevented the attack
◆ However, 1,900 pages on 34 sites provided incorrect values for this header

● Out of which, 552 pages on 2 sites were exploited in Internet Explorer
2. frame-ancestors directive in Content Security Policy (not supported in IE)

◆ A whitelist of origins allowed to load the current page in a frame
3. Use JavaScript code to prevent framing of a page

◆ i.e., redirecting the top frame if the page is not the top window itself
◆ However, attackers can use the HTML5 sandbox attribute in the iframe tag and omit the 

allow-top-navigation directive to render JavaScript frame-busting code ineffective

We did not implement any of these techniques to allow framing, which means that 
more vulnerable pages could likely be exploited in practice
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MIME Sniffing
➔ Many sites contain misconfigured content types

◆ Browsers attempt to infer the type based on the request context or file extension
● MIME sniffing, especially in quirks mode

➔ Setting X-Content-Type-Options: nosniff in response header block the 
request if the requested type is:
◆ "style" and the MIME type is not "text/css", or
◆ "script" and the MIME type is not, i.e., “application/javascript”

➔ Only Firefox, Internet Explorer, and Edge respected this header at the time
◆ Chrome started supporting the header since January 2018
◆ IE blocked our injected CSS payload when nosniff was set even with framing trick

➔ 96,618 vulnerable pages across 232 sites had a nosniff response header
◆ 23 pages across 10 sites were exploitable in Chrome but not in Internet Explorer
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Content Management Systems
➔ Many exploitable pages appeared to belong to well-known CMSes

◆ CMSes are installed on thousands of sites, fixing RPO vulnerability is impactful
➔ Detected 23 CMSes (Wappalyzer + manually)

◆ 41,288 pages across 1,589 sites
➔ Installed the latest versions (or used the online demos)
➔ Detected 4 exploitable CMSes

◆ 1 declared no document type
◆ 1 used a quirks mode document type
◆ 2 were exploited in IE using framing trick
◆ 40,255 pages across 1,197 sites (nearly 32k sites world-wide)

➔ Weaknesses were reported to the vendors
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Mitigation Techniques
➔ Avoid path confusion

◆ Use only absolute (or root-relative) paths or <base> tag
➔ Avoid style injection

◆ Input sanitization (non-trivial)
● More targeted RPO attack variants can reference existing files

➔ Prevent stylesheets with syntax errors or no “text/css” content type
◆ Specify a modern document type: <!doctype html>
◆ Disable content type sniffing: X-Content-Type-Options

➔ Prevent Internet Explorer trick
◆ Disallow framing: X-Frame-Options
◆ Turn off compatibility view: X-UA-Compatible (IE=Edge)
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Conclusion
➔ Excision

◆ Allows for preemptive blocking with moderate performance overhead
◆ Detected malicious hosts before appearing in the blacklists

➔ OriginTracer
◆ Allows users to make fine-grained trust decisions
◆ Evaluation shows it can be performed in an efficient and effective way

➔ RPO
◆ Style-based attacks require different countermeasures than XSS
◆ Easy-to-use and effective countermeasures exist to mitigate the attack

79



Thesis Publications
➔ Third-party Content Inclusion ⇒ Excision

◆ Sajjad Arshad, Amin Kharraz, William Robertson, “Include Me Out: In-Browser 
Detection of Malicious Third-Party Content Inclusions”, Financial Cryptography and Data 
Security (FC), 2016

➔ Ad Injection ⇒ OriginTracer
◆ Sajjad Arshad, Amin Kharraz, William Robertson, “Identifying Extension-based Ad 

Injection via Fine-grained Web Content Provenance”, Research in Attacks, Intrusions 
and Defenses (RAID), 2016

➔ Relative Path Overwrite (RPO)
◆ S. Arshad, Seyed Ali Mirheidari, Tobias Lauinger, Bruno Crispo, Engin Kirda, William 

Robertson, “Large-Scale Analysis of Style Injection by Relative Path Overwrite”, The 
Web Conference (WWW), 2018

80



Deep Crawling
➔ The Inclusion Tree crawler has been evolving
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Thanks! Questions?

Sajjad Arshad
https://sajjadium.github.io/
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