
 A Disk Scheduling Algorithm Based on ANT Colony Optimization

Abstract

Audio, animations and video belong to a class of data

known as delay sensitive because they are sensitive to
delays in presentation to the users. Also, because of huge
data in such items, disk is an important device in
managing them. In order to have an acceptable
presentation, disk requests deadlines must be met, and a
real-time scheduling approach should be used to
guarantee the timing requirements for such environment.
However, some disk scheduling algorithms have been
proposed since now to optimize scheduling real-time disk
requests, but improving the results is a challenge yet. In
this paper, we propose a new disk scheduling method
based on Ant Colony Optimization (ACO) approach. In
this approach, ACO models the tasks and finds the best
sequence to minimize number of missed tasks and
maximize throughput. Experimental results showed that
the proposed method worked very well and excelled other
related ones in terms of miss ratio and throughput in most
cases.

Keywords: Disk Scheduling, ACO, real time, missed

task

1. INTRODUCTION

Processor speed is expected to be doubled every year
due to the advances in hardware technology. The capacity
of storage devices is also increased at 60% to 80%
annually, but no similar improvement is expected to
reduce the disk access time [1]. Due to relatively slow
speed of disks the role of an efficient disk scheduler
algorithm is very crucial to deliver a smooth video
playback to the users. On the other hand, one of the
requirements of real-time applications is Quality of
Service (QOS) guarantee by operating system [2]. These
applications are categorized based on the strictness of
their QOS requirements as soft or hard real-time
applications [3]. In soft real-time applications such as
video/audio playback, the most important QOS
requirements are minimizing the number of missed
deadlines requests while maximizing the system
throughput [4,5]. In multimedia soft real time systems,
disk scheduling has an important role in satisfying real
time constraints.

There are some traditional disk scheduling algorithms
such as FCFS, SCAN, C-SCAN, LOOK, C-LOOK and

SSTF [6,7,8,9] that do not consider real-time constraints
of I/O tasks and therefore are not suitable to be applied
directly on a real-time system. On the other hand, some
other disk scheduling algorithms such as Earliest-
deadline-first (EDF) address this issue without
considering disk-seek time as an important bottle neck in
the systems. The employment of EDF in the strict sense
results in poor throughput and excessive seek-time.

SCAN-EDF [10], which utilizes SCAN to reschedule
tasks in a real-time EDF schedule, is one of the best-
known real-time disk scheduling algorithms. Since tasks
rescheduled in SCAN-EDF should have the same
deadline, its efficiency depends on the number of tasks
with the same deadlines. If all tasks have different
deadlines, the schedule result of SCAN-EDF would be the
same as EDF. In SCAN-EDF algorithm, rescheduling is
only possible within a local group of requests. To
overcome this problem, Deadline- Modification-SCAN
(DM-SCAN) [11] suggests the use of Scannable-groups.
In this algorithm, request deadlines are reduced several
times during the process of rescheduling to preserve EDF
schedule. Unlike DM-SCAN, Reschedulable-group-
SCAN (RG-SCAN) [12] does not require its input disk
requests to be sorted by their deadlines. It also forms
larger groups without any deadline modification.

In SCAN-EDF, DM-SCAN, and RG-SCAN algorithms
rescheduling is only possible within a local group of
requests. Chang et al. in [13] suggests Global Seek-
optimizing Real-time (GSR) disk scheduling algorithm
that groups the EDF input tasks based on their scan
direction. These tasks are moved to their suitable groups
to improve the system performance in terms of increased
disk throughput and decreased number of missed
deadlines. GSR schedules are always feasible if the input
real-time disk requests are arranged in an EDF feasible
sequence. But with an infeasible input, it is very unlikely
to have a feasible output.

The general real-time disk scheduling with linear seek-
cost function is an NP-complete problem [14], therefore,
ACO (Ant Colony Optimization) may be employed to
solve it. To the best of our knowledge, there is only one
ACO disk scheduling methods in literature that has been
proposed by S. Okdem et al. in [15]. This method works
based on the idea of travelling salesman problem (TSP)
and aims to reduce the response time of requests. In this
method no solution has been considered to reduce the
number of missed requests.

Hossein Rahmani
Electrical and Computer

Engineering Department

Shahid Beheshti University

G.C; Tehran, Iran
h.rahmani@mail.sbu.ac.ir

Sajjad Arshad
Electrical and Computer

Engineering Department

Shahid Beheshti University

G.C; Tehran, Iran
s.arshad@mail.sbu.ac.ir

Mohsen Ebrahimi Moghaddam
Electrical and Computer

Engineering Department

Shahid Beheshti University

G.C; Tehran, Iran

m_moghadam@sbu.ac.ir

37

Here, we propose an ACO based method to schedule
disk requests. The proposed method considers reducing
missed requests while tries to improve throughput.
Experimental results were satisfactory and showed the
proposed method worked better than related ones in terms
of miss ratio and performance.

The rest of paper is organized as follows: in section 2,
the real-time disk scheduling problem is described briefly
and in section 3, the proposed approach is introduced.
Section 4 describes the evaluation results and simulation
way and in section 5, paper is concluded.

2. PROBLEM DESCRIPTION

Each disk request �� in a real-time environment is

defined by its ready time ��, deadline time ��, sector
number ��, data size ��, and its corresponding track
location 	�. Ready time is the earliest time at which a disk
task can start. Deadline time is the latest time at which
disk task should be completed. The actual starting and
completing time of a disk task are called start time
� and
fulfill (finish) time �� respectively. The start time and
finish time of a real-time task �� with schedule sequence ���� are computed by
� max ��� , ��� and ��
� � ��,�,
respectively. The start time and finish time of a real-time
task �� with schedule sequence ���� are computed by
� max ��� , ��� and ��
� � ��,�, respectively.

Assume that the schedule sequence consists of two
sequential tasks �� and ��.To serve the disk request ��, the
disk-head moves from previous task cylinder (�) to the
requested one (�) by a seek-time cost. Then a rotational
latency is used for the desired sector. Finally, the
requested data (��) are transferred from disk to buffer in a
transfer time. Therefore, the service time of task ��
calculated as follows:
 ��,� ����������	� � 	��� � �� 	 ��!	�"	 �!�#$��% � ��	!
�������$��% (1)

Consider the schedule sequence &: �($)%�($*% …�($�% …�($,%; schedule fulfill time (�($,%) is
the finish time of the latest task (�($,%) and �($�% is the
data size of request �($�%. Therefore, the disk throughput
is calculated as follows when system start time is zero:

 �.��/0.1/ ∑ �($�% �($,% 3 $�($,%%4*⁄,�6* (2)

Therefore, the problem objective that is defined to
maximize throughput can be achieved by minimizing the
schedule fulfill time while number of missed tasks is
minimized. Overall, a real-time disk scheduling problem
is defined as follows:

Definition 1. Consider a set of n real-time disk tasks 7 �898: …8; …8<�. Finding a schedule with maximal

throughput and minimum missed tasks, is the goal of

real-time disk schedulers.

3. PROPOSED APPROACH

ACO algorithm was developed by Dorigo et al. [16].

These algorithms evolve their social behavior based on
the fact that ants are able to find the shortest route
between their nest and a source of food. This is done
using pheromone trails, which ants deposit whenever they
travel, as a form of indirect communication.

Ant System, as the first ant colony optimization
algorithm, showed to be a viable method for attacking
hard combinatorial optimization problems. In the
proposed approach, we used MAX-MIN Ant System
(MMAS) [17] that is an Ant Colony Optimization
algorithm derived from Ant System. The MMAS
algorithm has made two changes in the standard Ant
System in order to optimize its performance:

1. In MMAS, in order to achieve a strong exploitation
of the search history, only the best solution of each
iteration is allowed to add pheromone during the
pheromone trail update.

2. MMAS uses a rather simple mechanism for limiting
the strengths of the pheromone trails. A lower bound and
an upper bound are enforced for the total amount of
pheromone left on each edge. This solution effectively
avoids premature convergence of the search.

The proposed ACO based disk scheduling algorithm
aims to find the best order of tasks according to two
objectives: minimizing the total number of missed tasks
and maximizing the disk throughput. Because tasks enter
and leave the system dynamically at any moment, this
algorithm chooses the best possible task, among the tasks
already exist in the queue. The algorithm is run
simultaneously with the disk operation, in this way the
best next tasks is selected while the current task is being
serviced. The pseudo code of proposed method is as
follows:
 =>?@ABC>A ���D����	
�
; E/���! ���� 0; E/���! E#��!��� 0; GH;IA $J/�/� �
 !� ��1 #% K? ����D� ��

�� 	
�
 ���� J/�/�; L�M�	
� N� L�O �	
�$J/�/�, E/���! ����, E/���! E#��!���%; ����� L�M�	
� � �O��/ �; E/���! ����� ��������$|	QR(STUV � E/���! E#��!���|%� �� 	 ��!	�"	 �!�#$�QR(STUV%� ��	!
�������$�QR(STUV%; E/���! E#��!��� 	QR(STUV; W1�	 � J/�/� M� . 	
�

	 �
�# �!: ��	�#���� �� 	
�X E/���! ����; Y<B; =>?@ABC>A N� L�O �	
�; Z!� �	��[� � !/���� �� 	
�
 �! J/�/�2 ; Z!� �	��[� 1.�����!� �� �D��# ��0� ��� , ���]^T_; Z!� �	��[� `! 1	�	�� ��
; a�
 N���	�`! !/��; GH;IA $!/���� �� � ��	 ��!
 b � c<B !� ��D��	0�% K?

38

N�!��	 � �
��/ ��!
 $!
%; d?> $�	�. 	! �% E�!
 �/� ��
 "V; d?> $�	�. 	! �% E	��/�	 � e� !�

 �� 	! �; e�!� .� ��
 	! ��� �/���! � ��	 ��! $a�
 "��	�`! %; W1�	 � .� 1.�����!� �	�� �# a�
 "��	�`! ; d?> ��	�. ��0� $�� , ��%� fg �]��� , ��� h]^T_� 8HA<]��� , ���]^T_; YIiA fg �]��� , ��� b]^�,� 8HA<]��� , ���]^�, fg $e� jRUklmnTop,k b e� jRUkqomrTop,k% 8HA< a�
 N���	�`! a�
 "��	�`! ; Y<B; sA7C>< .� ���
 	
� ���� .� a�
 N���	�`! &
 ��
 ;

In the procedure ���D����	
�
, each time the scheduler

wants to pick a task, the queue has to be updated. So all
the missed tasks, and also the tasks that will surely be
missed by the end of current task are deleted from the
queue. As the running time of current task and its cylinder
is known, the future values of E/���! ���� and E/���! E#��!��� at the end of current task are calculated,
and tasks which will be missed by that time are
distinguished and deleted. So each task with ��	�#����
less than E/���! ���� is added to queue. Then the N� L�O �	
� procedure is called in order to identify the
next best request to execute. Ants move on the tasks in
order to find the best possible solution. At first, �
solutions (ants) are generated while each one has a list "V
which is used to keep the order of tasks for being
serviced; this list is emptied at the beginning. Initially,
each ant randomly selects one of the tasks in the queue as
the first task and adds it to its list. Then in each step the
ant selects one of the unselected tasks from queue by
considering the selection probability that is defined in Eq.
3. We name the last selected task in the list of an ant as ��
and any other unselected task is named as ��. When ant � wants to select a new task and add it to its list "V, a
probability function t is calculated for each �� according
to the following equation:

tV��� , ��� u]$�� , ��%v w x$�� , ��%y∑]$�� , ��%v w x$�� , ��%ySz{l|
 �� �� { "V

0 � .��M�
�
}

(3)

 tV��� , ��� is the probability that ant t selects �� as its
next task. Here ~ and � are exponent parameters that
control the relative importance of pheromone
concentration versus the heuristic factor. Both ~ and � can
take values greater than zero and should be determined by
trial and error.]��� , ��� is the amount of pheromone on the
path between �� and ��, and x��� , ��� is a heuristic function
that is defined as follows:

 x$�� , ��% *�w�RRVS�^R��T�4Tz���$*4�%w$�z4��% (4)

As our objectives are both minimizing the number of
missed tasks and maximizing the disk throughput, we
consider a variable � which defines the effectiveness of
these two parameters on our heuristic function. By
decreasing �, the effectiveness of deadline is increased
and hence the miss count would be degraded. On the other
hand, increasing �, results in throughput increase.

Before an ant selects a new task from the queue, it
virtually simulates the system’s state after choosing that
task. This is done by calculating the E/���! ���� and E/���! E#��!��� of system in that situation.
Consequently, during this simulation some of the tasks
may be missed and deleted from the virtual queue of the
ants.

After the virtual queue of ant � is emptied, the ant’s
job is over and its result sequence will be evaluated by the
following fitness function:
 e� V �	���1	! � ��

E�/! w ���
 ��	���!� (5)

Where �	���1	! is the total execution time of all

tasks in the list, ��

E�/! is the number of missed tasks,
and ���
 ��	���!� is the maximum deadline of tasks in
the queue. As Eq. 5 shows, the fitness function is
minimum when the value of ��

E�/! is zero and
the �	���1	! has its minimum value. By using this
function, when ��

E�/! is minimized, number of
completed task is maximized, therefore, the throughput
increases. On the other hand, by minimizing
the �	���1	!, the throughput increases also. Therefore,
the proposed fitness function, models increasing
throughput, decreasing miss ratio and decreasing �	���1	! simultaneously.
 After all ants have prepared their result sequences, the
pheromone of each path $��, ��% is modified by the
following formula:
]k���, ��� �]k4*���, ��� � ∆] ���, ��� (6)

∆]k���, ��� � 1e� ��
 �� ���, ��� � a�
 "��	�`! �
 1	 .0 � .��M�
� } (7)

Where]k���, ��� is the amount of pheromone on path $��, ��% in the current iteration,]k4*���, ��� has the same
value with previous iteration, �

is the evaporation

parameter, and e� rRUk is the fitness of best ant’s result in
the current iteration.

After termination, the first task of the best global ant’s
result is returned for execution. The termination condition
satisfies when number of iteration is greater than half of
tasks or coverage occurs.

4. EXPERIMENTAL RESULTS

In this section, experimental results are presented that

consists of the comparison results among the proposed

39

method and some other related ones. All implementations
performed on a personal computer with 1.66 GHZ of CPU
and 2 GB of RAM in the C++ environment.
results a typical disc (HP 97560) that its main parameters
are shown in Table 1.

Test input consists of a collection of disk requests with
their ready times assigned automatically by a uniform
random number. The deadline is relatively calculated by
summation of the corresponding ready time with the
period time of task. Period time is also distributed
uniformly. Each task has a 36KB request for data. The test
sets used in the simulations are shown in Table

Table 1- Disk parameters of HP 97560

Cylinders per disk 1972
Tracks per cylinder 19
Sectors per track 72
Sector size 512 bytes
Seek time function
(ms) Seek(��,�)=�3.24 � 0.4���8.00 � 0.008��
Revolution speed 4002 RPM
Transfer time 10 MBps

Table 2- Test sets used in simulation
Test
sets

Number of
Problem

Ready time

TC1 1000
Uniform

Random(0..160ms)

TC2 1000
Uniform

Random(0..240ms)

TC3 1000
Uniform

Random(0..400ms)

The results are compared with some well

methods such as C-LOOK, CSCAN, FIFO, EDF, SCAN
EDF, GSR and Proposed ACO in terms of number
missed tasks and achieved throughput.

It is worth mentioning that the parameters of ACO
were adjusted by the values that are shown in Table 3.

Table 3- Parameters of ACO (N: Number

Number
of ANTs

Maximum
Iterations

~ � � � L2
L2 1.0 2.0 0.98 0.1

Figure 1 and 2 shows the average miss ratio and

throughput for all algorithms when they were applied on
TC1 problems. For each problem we applied the proposed
ACO, 100 times the average number of missed tasks and
throughputs have been reported.

It is obvious in the figure 1 that the proposed ACO
better results in terms of the miss ratio in
other methods. The proposed ACO has improved the miss
ratio about 7% in the average case in compare
which has the lowest miss ratio among related
Also, our method worked better than FIFO, EDF, GSR
and SCAN-EDF in terms of throughput. Its throughput is

. All implementations
performed on a personal computer with 1.66 GHZ of CPU
and 2 GB of RAM in the C++ environment. In getting

that its main parameters

a collection of disk requests with
their ready times assigned automatically by a uniform
random number. The deadline is relatively calculated by
summation of the corresponding ready time with the
period time of task. Period time is also distributed

request for data. The test
sets used in the simulations are shown in Table 2.

Disk parameters of HP 97560

�,� ��,� X 383��,� ��,� h 383}

Test sets used in simulation
Number of

Tasks

20

30

50

with some well-known
FIFO, EDF, SCAN-

in terms of number of

ioning that the parameters of ACO
adjusted by the values that are shown in Table 3.

mber of tasks)

]^�,]^T_

 10 20

miss ratio and
they were applied on

For each problem we applied the proposed
of missed tasks and

proposed ACO has
in compare with

has improved the miss
in the average case in compare with GSR

related methods.
FIFO, EDF, GSR
. Its throughput is

5.27*36KBps more than GSR throughput in the average
case.

Figure 3 and 4 show the miss ratio and throughput

all algorithms when they were applied on
Figure 3 shows the average miss ratio over these
problems. The values have been calculated in the same
manner with figure 1. The proposed
the miss ratio about 6% in the average case in compare
with GSR which has the lowest miss ratio among
Also, our method worked better than
and SCAN-EDF in terms of throughput
was about 3.6*36KBps more tha
best throughput among others.

26.1%

22.9%
21.1%

19.7%

15

0%

5%

10%

15%

20%

25%

30%

FIFO CSCAN CLOOK SCAN
EDF

M
is

s
R

a
ti

o

Fig 1- Average miss ratio of problem s in TC

42.31
48.11 50.03

43.23

0

10

20

30

40

50

60

FIFO CSCAN CLOOK SCAN
EDF

T
h

ro
u

g
h

p
u

t
(×

3
6

K
b

/s
)

Fig 2- Average throughput of problems in TC

24.9%

18.5%
17.0%

15.7%

12

0%

5%

10%

15%

20%

25%

30%

FIFO CSCAN CLOOK SCAN
EDF

M
is

s
R

a
ti

o

Fig 3- Average miss ratio of problems in TC

throughput in the average

miss ratio and throughput for
they were applied on TC2 problems.

shows the average miss ratio over these
The values have been calculated in the same

manner with figure 1. The proposed method has improved
in the average case in compare

which has the lowest miss ratio among others.
Also, our method worked better than FIFO, EDF, GSR

in terms of throughput. Its throughput
more than SCAN-EDF that had

15.9% 15.7%

8.6%

EDF GSR Proposed
ACO

Average miss ratio of problem s in TC1

42.50 42.7
47.97

EDF GSR Proposed
ACO

Average throughput of problems in TC1

12.3% 12.2%

6.3%

EDF GSR Proposed
ACO

Average miss ratio of problems in TC2

40

Figure 5 and 6 shows the average miss ratio and
throughput for all algorithms when they were applied on
TC3 problems. The proposed ACO has improved the miss
ratio about 5% in the average case in compare
which has the lowest miss ratio among traditional
methods. It is obvious in the figure 6 that the
ACO worked better than FIFO, EDF, GSR and SCAN
EDF in terms of throughput. The throughput is
4.95*36KBps more than best throughput among others.

One of the main concerns of proposed method is it
running time, because the proposed algorithm is used in a
real time environment, high running time may cause some
problems in scheduling of other tasks. Fig. 7 shows the
average running time of proposed method
applied on a queue with different number of tasks.
seems in the figure 7, the needed time to schedule 20
tasks is about 9ms; therefore the scheduling algorithm can
run simultaneously with typical tasks. Also

43.11

51.09 52.00

45.32 43.42 43.51

0

10

20

30

40

50

60

FIFO CSCAN CLOOK SCAN
EDF

EDF GSR

T
h

ro
u

g
h

p
u

t
(×

3
6

K
b

/s
)

Fig 4- Average throughput of problems in TC2

24.7%

15.6%
14.2%

11.0%
9.5% 9.5%

0%

5%

10%

15%

20%

25%

30%

FIFO CSCAN CLOOK SCAN
EDF

EDF GSR

M
is

s
R

a
ti

o

Fig 5- Average miss ratio of problems in TC3

43.13

54.39 55.05

46.19 43.79 44.22

0

10

20

30

40

50

60

FIFO CSCAN CLOOK SCAN
EDF

EDF GSR

T
h

ro
u

g
h

p
u

t
(×

3
6

K
b

/s
)

Fig 6- Average throughput of problems in TC

average miss ratio and

they were applied on
has improved the miss

in the average case in compare with GSR
which has the lowest miss ratio among traditional

that the proposed
FIFO, EDF, GSR and SCAN-

. The throughput is
best throughput among others.

One of the main concerns of proposed method is it
running time, because the proposed algorithm is used in a
real time environment, high running time may cause some

Fig. 7 shows the
proposed method when it is

queue with different number of tasks. As it
, the needed time to schedule 20

; therefore the scheduling algorithm can
tasks. Also, the running

time of algorithm increases by increasing n
but its increment is near linear.

Fig. 7- The average running time of

queue size

Therefore, the proposed method
of tasks in queue is fair; otherwise it may affect the
number of misses. If we are going to use the proposed
method for large number of tasks
implemented by hardware [18].

5. CONCLUSION

In this paper, a new approach based on
Algorithm (ACO) was proposed to
problem. The simulation results showed that the proposed
method has less number of missed tasks versus other
related work, and it improved the system th
least 5%.

The running time of proposed
it was implemented with C language; therefore, it can be
used to schedule systems that have
In other cases, a hardware implemented algorithm would
be used. In future, we are going to implement this
algorithm on FPGA.

6. REFERENCES

[1] J. Wilkes, C. Ruemmler, "An introduction to disc
drive modeling," IEEE Computer

17-29, March 1994.

[2] V. Goebel, P. Halvorsen, O. Anshus, T. Plagemann,
"Operating system support for multimedia systems,"
The Computer Communications Journal

3, p. 267–289, 2000.

[3] G. Lipari, J. Santos, R. Santos, "Improving the
schedulability of soft real
systems: The inheritor is actually a debtor,"
Journal of Systems and Software

1093-1104, 2008.

[4] S. Seshadri, Jayant R. Haritsa, S. Th

51
48.91

Proposed
ACO

2

%

4.2%

Proposed
ACO

3

22
49.17

Proposed
ACO

Average throughput of problems in TC3

2.11
4.3

5.9

0

5

10

15

20

25

5 10 15

T
im

e
(m

s)

Queue Size

time of algorithm increases by increasing number of tasks

The average running time of proposed method vs.
queue size

Therefore, the proposed method is useful when number
fair; otherwise it may affect the

If we are going to use the proposed
method for large number of tasks in queue, it should be

In this paper, a new approach based on Ant Colony
) was proposed to solve disk scheduling

. The simulation results showed that the proposed
method has less number of missed tasks versus other

and it improved the system throughput at

proposed method is not high when
it was implemented with C language; therefore, it can be
used to schedule systems that have fair number of tasks.
In other cases, a hardware implemented algorithm would

future, we are going to implement this

J. Wilkes, C. Ruemmler, "An introduction to disc
IEEE Computer, vol. 27, no. 3, pp.

V. Goebel, P. Halvorsen, O. Anshus, T. Plagemann,
"Operating system support for multimedia systems,"
The Computer Communications Journal, vol. 23, no.

G. Lipari, J. Santos, R. Santos, "Improving the
schedulability of soft real-time open dynamic
systems: The inheritor is actually a debtor," The

Journal of Systems and Software, vol. 81, no. 7, pp.

S. Seshadri, Jayant R. Haritsa, S. Thomas,

8.97

13.13

17.79

20 25 30

Queue Size

41

"Integrating standard transactions in firm real-time
database systems," Information Systems , vol. 21, no.
1, pp. 3-28, 1996.

[5] G. G. Belford, O. Ulusoy, "Real-time transaction
scheduling in database systems," Information

Systems, vol. 18, no. 9, p. 559–580, 1993.

[6] W.P. Yang, R.C.T. Lee, T.S. Chen, "Amortized
analysis of some disk scheduling algorithms: SSTF,
SCAN, and N-Step SCAN," BIT, vol. 32, no. 4, p.
546–558, 1992.

[7] M. Hofri, "Disk Scheduling: FCFS vs. SSTF
Revisited," Communications of the ACM, vol. 23, no.
11, p. 645–653, November 1980.

[8] J. A. Stankovic, J. F. Kurose, D. Towsley, S. Chen,
"Performance Evaluation of Two New Disk
Scheduling Algorithms for Real-Time Systems,"
Journal of Real-Time Systems, vol. 3, no. 3, p. 307–
336, 1991.

[9] G. R. Ganger, Y. N. Patt, B. L. Worthington,
"Scheduling Algorithms for Modern Disk Drives," in
Proceedings of ACM SIGMETRICS Conference,
May 1994, p. 241–251.

[10] J. Wyllie, K. B. R. Wijayaratne, A. L. N. Reddy,
"Disk scheduling in a multimedia I/O system," ACM

Transactions on Multimedia Computing,

Communications, and Applications (TOMCCAP),
vol. 1, no. 1, pp. 37-59, February 2005.

[11] R.I. Chang, W.K. Shih, and R.C. Chang, "Deadline-
modification-scan with maximum scannable-groups
for multimedia real-time disk scheduling," in
Proceedings of the IEEE Real-Time Systems

Symposium, 1998, pp. 40-49.

[12] R. I. Chang, W. K. Shih, R. C. Chang, H. P. Chang,
"Reschedulable-Group-Scan Scheme for Mixed
Real-Time/Non-Real-Time Disk Scheduling in a
Multimedia System," Journal of Systems and

Software , vol. 59, no. 2, pp. 143-152, 2001.

[13] R. I. Chang, W. K. Shih, R. C. Chang, H. P. Chang,
"GSR: A global seek-optimizing real-time disk-
scheduling algorithm," Journal of Systems and

Software , vol. 80, no. 2, pp. 198-215, 2007.

[14] W. C. Lu, C. N. Chou, W. K. Shih, P. C. Huang,
"The NP-hardness and the Algorithm for Real-Time
Disk-Scheduling in a Multimedia System," in
Proceedings of the 11th IEEE International

Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA’05), Hong Kong,
2005, pp. 260-265.

[15] D. Karaboga, S. Ökdem, "Otimal Disk Scheduling
Based on ANT Colony Optimization Algorithm,"
Erciyes Universiy Journal of the Institute of Science

and Technology, vol. 22, pp. 11-19, 2006.

[16] V. Maniezzo, A. Colorni, M. Dorigo, "The Ant
system: Optimization by a colony of cooperating
agents," IEEE Transactions on Systems, Man, and

Cybernetics-Part B, vol. 26, no. 1, pp. 29-41, 1996.

[17] H. H. Hoos, T. Stützle, "MAX-MIN Ant System,"
Future Generation Computer Systems, vol. 16, no. 8,
pp. 889-914, 2000.

[18] K.So, M. Guntsch, M. Middendorf, O. Diessel, H.
ElGindy, H. Schmeck, B. Scheuermann, "FPGA
implementation of population-based ant colony
optimization," Applied Soft Computing, vol. 4, p.
303–322, March 2004.

42

