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ABSTRACT
The web ecosystem is a fast-paced environment. In this dynamic
landscape, new security features are offered one after another to
enhance the security and robustness of web applications and the op-
erations they handle. This paper focuses on a fragile but still in-use
security feature, text-based CAPTCHAs, that had been wildly used
by web applications in the past to protect against automated attacks
such as credential stuffing and automated account hijacking. The
paper first investigates what it takes to develop automated scanners
that can solve previously unseen text-based CAPTCHAs. To this
end, we evaluated the possibility of developing and integrating
a pre-trained CAPTCHA solver in the automated web scanning
process without using a significantly large training dataset. We also
performed an analysis of the impact of such autonomous scanners
on CAPTCHA-enabled websites. Our analysis showed that using
solvable text-based CAPTCHAs on login, contact, and comment
pages of websites is not uncommon. In particular, we identified
more than 3,000 text-based CAPTCHA websites in critical sectors
such as finance, government, and health, involving hundreds of
thousands of users. We showed that a web scanner with a pre-
trained solver could solve more than 20% of previously unseen
CAPTCHAs in just one single attempt. This result is worrisome
considering the substantial potential to autonomously run the op-
eration across thousands of websites on a daily basis with minimal
training. Furthermore, the finding suggests that the integration of
autonomous scanning with pre-training and local optimization of
models can significantly increase adversaries’ asymmetric power
to launch their attacks cheaper and faster.

CCS CONCEPTS
• Security and privacy → Web application security; • Infor-
mation systems → Web crawling;
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1 INTRODUCTION
As the web continues to evolve, new features and mechanisms are
introduced to improve the security and trustworthiness of web
applications. In this context, deprecated security features refer to
technologies or practices that have become outdated and are no
longer recommended due to known vulnerabilities or possible eva-
sions. Appcache [35] and NPAPI Plugin support [69] are just a few
examples of these deprecated features that were replaced by more
robust features because of their impacts on the security posture of
web applications and their users. Among many other security fea-
tures, text-based CAPTCHAs (Completely Automated Public Turing
test to tell Computers and Humans Apart) have been also consid-
ered deprecated as a sole or primary security measure to prevent
automated bots and offensive web scanners. While there has not
been any formal announcement declaring text-based CAPTCHAs
as officially deprecated, there has been ongoing discussion in the
websecurity and web development communities [38, 60] about
the limitations of text-based CAPTCHAs. Over the last few years,
several new technologies (e.g., re-CAPTCHA v3 [13], behavioral
analytics [9, 12], 2FA [46]) have been developed to protect web
applications from offensive non-human web traffic.

There is no lack of evidence that text-based CAPTCHA has failed
to achieve its guarantees [15, 37, 45], and prior work [52, 85] have
proposed multiple proof of concepts to bypass this security feature.
In this paper, we aim to answer how this brittle security feature can
be impacted in a real-world setting by modern offensive scanners
that are designed to run autonomously at scale. In particular, wewill
answer howmuch technical effort or training data is needed to build
an integrated cracking method in modern web scanners to solve ar-
bitrary text-based CAPTCHAs found in target websites. Answering
these questions is important because: (1) the attack assumptions
seem realistic and in line with cost-sensitive adversaries’ goals –
which is to build generalizable offensive tools that can be applicable
to various cases with minimal effort, (2) bypassing CAPTCHAs, as a
security mechanism, can lead to consequential issues — a generaliz-
able CAPTCHA solver integrated with web scanning can facilitate
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automated credential stuffing and spamming at scale. Lastly, an-
swering these questions is critical, especially with the rising threat
of abusing pre-trained models in the wild (i.e., ChatGPT4 [55]).

To answer these questions, we created an analysis pipeline by
first generating a large catalog of CAPTCHA challenges, including
more than 15,000 images from 20 different CAPTCHA schemes. We
analyzed 14 open-source CAPTCHA solvers and incorporated four
well-known CAPTCHA cracking methods in our final pipeline. We
also identified over 3,000 websites with solvable CAPTCHAs in
their offered services. In the following, we highlight some of the
major results of this paper.

Deep learning-based object detection methods open new
opportunities in this adversarial space. While most of the
solvers performed well on their own trained CAPTCHA schemes,
they often failed to handle unfamiliar, out-of-distribution, yet sim-
ple CAPTCHAs. On the other hand, our analysis showed that with
a proper dataset that is not necessarily large and a proper learn-
ing algorithm, it is still possible to build pre-trained models that
can solve CAPTCHAs even from unseen schemes. In particular,
we observed that object detection models [21] can achieve this
goal because their performance does not depend on the underlying
image segmentation – the pre-processing step that has been the
choke point of almost all the other solvers – to extract letters. Our
analysis shows that the pre-trained model can successfully crack
13 different schemes that were not seen in the training phase. The
results show that a pre-trained model can solve CAPTCHAs with a
success rate of 80% where the average number of guesses in eight
CAPTCHA schemes is only 2.1 attempts (See Table 2).

The integration of pre-trained solvers into offensive scan-
ning can lead to consequential security problems. We per-
formed a large-scale analysis to evaluate the effectiveness of the
integrated solver in the web scanning process. To this end, we built
a dataset of top-rank domains [24] plus 30K login URLs collected
from prior studies [14, 66] and identified over 3,000 websites with
potentially solvable CAPTCHAs on the login, contact, or comment
page. The pre-trained model was able to successfully solve nearly
20% of the challenges in just one single attempt. Due to the na-
ture of the task, which can be launched autonomously, 20%
success rate is significant when those autonomous scanners
can hit thousands of websites each day to perform credential
stuffing or send malicious emails and spams on target appli-
cations. We observed that over 30% of the vulnerable CAPTCHAs
belonged to websites in critical sectors such as government, fi-
nance, and health with several thousands of monthly users (See
Section 5.3). We followed several ethics measures (see Section 5.1)
and responsibly disclosed the issues to the website publishers five
months before the submission.

While the issues discussed in this paper may not lead to severe
security problems in web applications that utilize state-of-art de-
fense services, they are a significant risk to web applications that
are using them. This security feature does not provide the secu-
rity guarantees it used to offer which in fact makes it even more
attractive for adversaries for for automated credential stuffing and
other forms of automated attacks on websites that offer important
services to users and handle vital data. In addition to the problem
of using a deprecated solution, our analysis shows the risk of using

pre-train models in the adversarial landscape where pre-trained
models can be distributed among adversaries and optimized with
new data for better coverage and cracking rate. This can signif-
icantly increase adversaries’ asymmetric power to launch their
attacks on web applications in a cheaper, faster, and more conse-
quential way. Our hope is that this work serves to raise awareness
about the importance of removing these deprecated features at the
web scale and minimizing the impacts of such unsavory practices
on critical web applications.
Contributions. The contributions are summarized as follows:

• We build a catalog of CAPTCHA images including more
than 15,000 samples from 20 different CAPTCHA schemes.
We use this dataset as a reference point to evaluate the
effectiveness of automated scanners.

• We develop a pre-trained solving model using object detec-
tion deep learning and show the model was able to solve
80% of the CAPTCHA challenges from 13 unseen schemes
with minimal training.

• We analyze top-ranked websites from The Chrome User
Experience Report (CrUX) [24] to gain insights into the
prevalence of solvable CAPTCHAs in the wild.

• The pre-trained models, the augmented web crawler, and
references to any used dataset are available for reviewers
at https://github.com/scannerpaper/artifacts.

2 BACKGROUND AND MOTIVATION
2.1 Threat Model
In this paper,wemake the following assumptions on attackers’ goals
and capabilities: (1) adversaries behind offensive scanners are
cost-sensitive– they aim to mainly target websites that require
less effort to evade bot prevention methods, (2) cost-sensitive
attackers mainly rely on available tools to develop their of-
fensive tools – the modules used to run the attacks relies on
optimizing publicly accessible methods, (3) scanning can be done
via proxies – the traffic can be generated from legitimate cloud
infrastructure or compromised web hosting servers to reduce the
effectiveness of common network-based reputation analysis tech-
niques [1, 3, 4, 17, 18], (4) scanners simulating user interaction:
malicious code can interact with the target web application to re-
duce the chance of being flagged as automated bot by invoking
some of the dynamic behavior of the target application and exer-
cise new program paths.Hence, our threat model in this paper will
consider these and other similar risks and the solutions that will be
developed should be robust against these malicious activities.

2.2 Credential Stuffing: A Motivating Example
Credential stuffing is the process of injecting breached credentials
into websites’ login forms with the goal of gaining unauthorized ac-
cess to target accounts. Credential stuffing [74] has been an effective
attack vector in the wild to gain unauthorized access to an account.
The central assumption in credential stuffing is that password reuse
is a common practice among technically less sophisticated users
and even if strong passwords are enforced, trying leaked credentials
across other services can potentially lead to a compromise. One
challenge to running successful credential stuffing on web applica-
tions is to be able to successfully solve CAPTCHA challenges when
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Figure 1: A motivating example. Automated Web Scanner for
credential stuffing.

asked. Having access to a list of leaked usernames and passwords
as well as login pages of target web applications, an adversary can
run a distributed cracking operation, while satisfying the checks
illustrated in Figure 1. We have created a demo1that shows how an
autonomous scanner with an embedded CAPTCHA cracking mod-
ule can impact the security posture of websites using this fragile
security feature. The demo is posted anonymously.

2.3 The Focus of This Paper
The focus of this paper is twofold: First, we aim to empirically eval-
uate what it would cost to make web scanners capable of solving
unseen text-based CAPTCHAs – to extend the coverage of auto-
mated attacks (e.g., credential stuffing) at the web scale.We plan to
answer how a cost-sensitive adversary can construct a CAPTCHA
cracking model with minimal access to training data, incorporate
the model into the scanning process, and start automated scan-
ning at scale. Second, we also aim to answer what would be the
impact of an efficient text-based CAPTCHA solver at the web scale
where there do still exist critical web applications with vulnerable
text-based CAPTCHAs.

3 METHODOLOGY
In this section, we elaborate on how we conducted our research
to construct a dataset and build a catalog of available algorithms
to construct the pre-trained models and test their effectiveness on
unseen and out-of-distribution CAPTCHAs.

3.1 Building a Catalog of CAPTCHA Challenges
As a first step, we define procedures for generating a catalog of
CAPTCHA challenges for benchmarking and evaluation. The avail-
able datasets are presented in two segments: (1) a custom dataset
that covers various types of CAPTCHAs with different complexity
levels, and (2) the dataset from prior work [52, 78, 85]. We generated
1https://youtu.be/jzFUp5m2G6k

a list of CAPTCHA challenges by incorporating CAPTCHAgen li-
brary [53] an open-source configurable CAPTCHA generator. In the
following, we describe some of the techniques we used to generate
the CAPTCHA challenges for training and evaluation.
CreatingBackground:ManyCAPTCHAgenerators use amonochro-
matic black orwhite background, which can be exploited byCAPTCHA
crackers to easily identify the foreground pixels. In this dataset,
every background image comprises a range of different colors. How-
ever, if the pixel values of the background vary too wildly, the final
CAPTCHA will be extremely difficult to read. Thus, we need to
make sure the colors only vary smoothly across the image. Specif-
ically, for each background, we randomly select 2 colors, each of
which is defined as a vector of RGB values. We let the color be
constant vertically, set the 2 randomized colors to be the colors
at the left and right end of the image, and set the colors at other
positions by linear interpolation between the 2 sides.
Length Complexity: For each image, we generate an alphanu-
meric string with a random length of between 5 to 9 characters.
For each character in the string, we create an image of that sin-
gle character with random font, color, and size. Then, we apply a
random rotation and a random perspective transform to the char-
acter image before pasting the character in the previously created
background. The positions to paste the characters are decided as
follows. Starting from the left side of the image, for each character,
we randomize an offset value, then place the character that amount
of pixels to the right of the previous character. This allows us to
have various spacing between characters. The offset can also have
a negative value, in which case we will make the character overlap
with the previous one. Vertically, each character is placed close to
the middle of the image, with a small random offset.
Adding Background Noise: Having access to a diverse set of
images with texts, we make these CAPTCHA images more difficult
to solve by adding some randomnoise. For each image, we randomly
draw some curves and dots with random colors. The number of
curves and dots as well as their thickness is carefully tuned so that
they make it significantly more difficult to segment the text pixels
from the background pixels while not corrupting the image.
The dataset.We have generated CAPTCHA samples with different
security features to use in our experiments. An important feature
of the generated CAPTCHA Catalog is that it includes the position
of the characters as the label beside the actual CAPTCHA text. The
schemes are extracted from real-world websites, both from the sur-
face web and dark web, and manually labeled for further research.
Each scheme contains different combinations of anti-segmentation
techniques. Each scheme includes at least 500 images. The whole
dataset consists of more than 15,000 CAPTCHA challenges across
20 different CAPTCHA schemes including those we generated our-
selves for this paper as well as the ones used in recent prior work.

In addition to this custom dataset discussed here, we contacted
the authors of prior work [78, 85] and used their dataset in the eval-
uation. Table 4 in Appendix A.2 shows the full list of all CAPTCHA
schemes used in this paper along with their security features.

3.2 Building a Catalog of CAPTCHA Solvers
Table 1 shows the CAPTCHA solvers we used to start the exper-
iments. The repositories are selected based on their popularity
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Table 1: Details of Publicly Available CAPTCHA Solvers. Each solver is aimed to work with their CAPTCHA scheme, which
defines the visual style and anti-segmentation techniques of the CAPTCHAs. Nine repositories contained the training dataset
or the code to generate the dataset, and only six repositories shared the actual model. The security features column shows
whether or not the used scheme includes Overlapping characters (O), Line Noise (L), Curve Noise (C), or Background Noise (N).
Repositories marked with □✓provide the code to generate the dataset.

CAPTCHA Solver Last update Forks Stars
Segmentation
Technique

Recognition
Model CAPTCHA Scheme

Security
Features

Dataset
Available

Model
Available

zakizhou/CAPTCHA [82] Nov, 2017 23 61 - CNN Python CAPTCHA [6] O-C-N □✓ ✗
nladuo/CAPTCHA-break [51] Nov, 2018 227 685 Static OCR, CNN Custom O-C-N ✓ ✗
ypwhs/CAPTCHA_break [79] Jan, 2020 666 2.4k - CNN, GRU Python CAPTCHA O-C-N ✗ ✓
zhengwh/CAPTCHA-svm [87] Aug, 2017 93 200 Static SVM Custom N ✗ ✓
ptigas/simple-CAPTCHA-solver [57] Nov, 2017 133 483 Static Static Matching - L ✗ ✗
0b01/SimGAN-CAPTCHA [54] Jul. 2017 85 418 - CNN Generated by GAN O-L ✗ ✗

JackonYang/CAPTCHA-tensorflow [33] May, 2022 243 835 - CNN Python CAPTCHA O-C-N □✓ ✗

PatrickLib/CAPTCHA_recognize [59] Jun, 2017 167 502 - CNN Python CAPTCHA O-C-N □✓ ✗

chxj1992/CAPTCHA_cracker [10] Oct, 2019 52 157 Static CNN PHP CAPTCHA L-N □✓ ✓
JasonLiTW/railway-CAPTCHA-solver [34] Jul, 2018 153 692 - CNN Taiwan Railway Booking N □✓ ✗
lllcho/CAPTCHA-breaking [45] Jun, 2016 84 228 - CNN English and Chinese L-N ✓ ✓
johnnyzn/DW-GAN [37] Jan, 2022 21 141 Contours, Static GAN, CNN Python CAPTCHA O-C-N □✓ ✓
DrMahdiRezaei/Deep-CAPTCHA/ [15] Mar, 2021 7 33 - CNN Python CAPTCHA O-C-N ✗ ✗

Object Detection-Based Model [21] - - - - YOLOX Python CAPTCHA O-L-C-N □✓ ✓

and the last update. Solving a CAPTCHA challenge consists of
three interconnected steps: Preprocessing, Segmentation, and Recog-
nition. Selecting one particular implementation in one step can
significantly influence the effectiveness of subsequent steps. In the
following, we briefly describe each step.
Preprocessing. In the preprocessing phase, the solver will remove
any kind of noise from the image while keeping the main characters
intact. Choosing "the best method" for preprocessing significantly
depends on the target CAPTCHA scheme and the security features
used in the images (e.g., noise level and color range).
Segmentation. Segmentation is the process of decomposing a
given CAPTCHA image into a set of sub-images of individual char-
acters. This step, if performed accurately, makes the recognition
step much easier for the solver by providing the ability to use a
wide range of models that are trained with single-character images.
However, coming up with accurately segmented characters is not a
trivial task and highly depends on the CAPTCHA features.
Recognition. This step is responsible for generating the text output
of the solver. If the solver includes a segmentation step, the input
of the recognition step is the single-character images. Otherwise,
the recognition is performed on the whole input CAPTCHA image.

3.2.1 Publicly Available CAPTCHA Solvers. In eight of the
solvers discussed in Table 1, the corresponding model was not avail-
able or it was not clear how to attain or create the labeled dataset.
Consequently, a part of the analysis was to train the model utiliz-
ing the available dataset, thereby assessing both the accuracy and
viability for seamless integration within the scanning process. The
process of performing training required handling several corner
cases. Suppose that we train a model for solving four-character
CAPTCHAs which only include small letters. In this case, the out-
put of the model will be 4*26 (4 characters, 26 letters of the alphabet).
Therefore, the same model cannot be used for CAPTCHA schemes
with different sizes or those containing capital letters and/or dig-
its. To partially solve the issue for training, we had to resize the
input image to our predefined width and height when training the
model. Furthermore, we used a comprehensive dictionary contain-
ing lowercase letters, uppercase letters, and digits when encoding

the CAPTCHA text to a vector. Additionally, we faced more limita-
tions when cracking a CAPTCHA with a size other than the one
used for training which caused a fundamental issue.

3.2.2 Prior Scientific Work. We contacted the authors of
DeepCAPTCHA [52] and DW-GAN [85] and received the source
code for analysis. In DeepCAPTCHA, the preprocessing stage is
done by converting the image to grayscale. The model consists of
multiple Softmax layers with each layer responsible for recognizing
a single character. The concatenation of the outputs produces the
final CAPTCHA string. The DW-GAN project makes use of gener-
ative adversarial networks (GAN) in the preprocessing stage. Since
the method performs the segmentation by finding contours, it is
capable of solving CAPTCHAs with variable character lengths. The
segmentation phase receives a denoised image and runs techniques
such as border tracing [56] and pixel-level segmentation [67] to
extract characters.

We also borrowed recent deep learning-based object detection
models [80] that are known to work well in extracting semantic-
level features of images. In particular, we used the YOLOXmodel [21],
a newly proposed method that can achieve high accuracy without
introducing significant computational costs. Unlike classification
models which only predict the class of a single object in an image,
object detection models work on images with a variable number of
objects. For each object in the image, the model predicts both its
location in the image, represented by a bounding box as well as its
class which is the character text. Using object detection removes
the requirement for having accurate segmentation which has been
the main flaw of current solvers.

4 SOLVING CAPTCHAS WITH MINIMAL
TRAINING

The main objective of this paper is to evaluate the possibility of
integrating trained solvers discussed in Section 3.2 and identify
opportunities that exist for an adversary to build more autonomous
web scanning To this end, we pre-trained the discussed CAPTCHA
models using only one of the CAPTCHA schemes as the reference
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dataset and trained the model using the selected scheme to simulate
real-world scenarios where adversaries cannot have access to all
forms of training data, and it is very likely that the web scanner is
exposed to CAPTCHAs from previously unseen CAPTCHA gen-
erators (out-of-distribution data). After training the model on the
reference dataset, we used the model to solve CAPTCHAs from
other schemes. The pre-trained CAPTCHA solvers are integrated
into the scanner by importing the required files and trained model
as a Python package. In the following, we briefly provide the results
of those experiments.

4.1 Solving CAPTCHAs via Publicly Available
Solvers

As mentioned earlier, in eight CAPTCHA solvers shown in table 1,
the corresponding model was not available or there was minimal
explanation on how to use the code to train the model. We were
able to modify most of the code base in these methods to use the
generated labeled dataset for training. One of the most common
modifications to enable the code was to modify the pre-processing
module to parse and segment inputs with variable sizes and match
them to the target CAPTCHA scheme (as mentioned earlier in
Section 3.2.1). Despite all the efforts, the results of the analysis
were not very promising. That is, the methods were customized to
be used on specific forms of CAPTCHAs, and common hardening
tricks such as background noise could highly impact their accuracy.

We also incorporated DeepCAPTCHA [52] and DW-GAN [85]
models as the two AI-based solvers proposed in prior work. To eval-
uate DeepCAPTCHA with minimal training, we used the Python
CAPTCHA scheme as the reference scheme to train the model. We
then used the model to solve 20 CAPTCHA schemes with 1000
samples for the synthesized CAPTCHA Catalog and 500 samples
for the schemes from related works. Our analysis shows that while
these methods were working well on their reference datasets, used
for training, their accuracy dropped dramatically when used on
other datasets where the CAPTCHA scheme was unknown to the
model. For instance, the trained model of DeepCAPTCHA was able
to correctly solve CAPTCHA of the same scheme in the test phase
with an accuracy of 98%. For the DW-GAN, we used the Rescator 1
to train the model and used the pre-trained GAN model available
in the repository for the preprocessing stage. The accuracy of the
model of the same CAPTCHA scheme in the test phase was around
75%. The accuracy of both models dropped significantly when ap-
plied to unseen CAPTCHA cases. In particular, we observed that in
cases where the CAPTCHA contains overlapping characters or
incorporates background noise, the effectiveness of these solvers
drops rapidly (see figure 2).

4.2 Object Detection as the Default Model
The underlying issue of the traditional segmentation techniques
is that they can only process the image at the pixel level, hence
they often fail in situations where characters are too close or have
overlapping pixels. The common technique to mitigate this problem
is to remove the noise so that it is easier to detect the characters,
but since it is nontrivial to know in advance which pixels belong to
characters and which ones are noise, this can lead to corrupting the
object of interest and make it impossible to recognize later. In the

Figure 2: A CAPTCHA in login pagewhich fails currentmeth-
ods. The CAPTCHA sample contains overlapping characters
and background noise.

object detection model, discussed in Section 3.2.2, each character
in the image is treated as an object. Unlike classification models
which only predict the class of a single object in the image, object
detection models can work on images with a variable number of
objects. For each object in the image, the model predicts both its
location in the image, represented by a bounding box, and its class.

The training phase of the object detection model is performed
using the Cat 5 scheme of our CAPTCHA Catalog. This scheme
has the highest level of security features which makes the model
more robust for generalized cases and provides a higher chance of
solving CAPTCHAs from different schemes. It also provides the
position of the characters as the label which is required for training
our object detection model. We trained the model on NVIDIA RTX
A5000 GPU for 10 epochs on 10K data samples in 15 minutes.

In order to evaluate our chosen object detection pre-trained
model, we defined a set of experiments to run on all CAPTCHA
schemes. We define amax attempts parameter which represents the
maximum number of times the scanner is allowed to try solving the
chosen CAPTCHA. Each experiment is considered successful if the
solver can crack the randomly chosen CAPTCHAs before reaching
the max attempts. Table 2 provides the results of 100 experiments
when using different numbers asmax attempts. The model was able
to solve 13 CAPTCHA schemes other than the reference scheme.
Missing Cases. The analysis reveals the pre-trained model fails
under specific scenarios. In this part, we discuss the root cause
of false positive cases. Figure 6 in Appendix A.5 provides sam-
ples of CAPTCHAs that the model was not able to solve for dif-
ferent reasons. One source of false output has been aggressive
background noise. Schemes jd and qihu utilize this method to de-
fend against crackers. In other cases, unusual noise was observed
in the CAPTCHA. For example, baidu scheme contains a specific
noise pattern that is interpreted as a set of characters, resulting
in incorrect results. Furthermore, if the CAPTCHA included char-
acters with a different style than what the model was trained on,
it would also fail. Examples of such cases are the google and wiki
schemes. To successfully solve CAPTCHAs with different styles,
the model can be trained on that particular style of characters. How-
ever, effectively handling unusual noise requires a more advanced
preprocessing stage, which is beyond the scope of this paper. Also,
note that in a real-world setting, injecting extreme noise can have
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Table 2: Results of our Object detection model. Success Rate
and Average Attempts of Scanner in 100 CAPTCHA solving
Experiments for each scheme.

Max Attempts 5 20 50

Scheme Success
Rate

Average
Attempts

Success
Rate

Average
Attempts

Success
Rate

Average
Attempts

Alipay 89.00% 2.08 100.00% 2.83 100.00% 2.56
Cat 1 100.00% 1.62 100.00% 1.44 100.00% 1.56
Cat 2 98.00% 1.77 100.00% 2.12 100.00% 1.81
Cat 3 84.00% 2.13 100.00% 3.12 100.00% 3.12
Cat 4 84.00% 2.38 100.00% 3.9 100.00% 3.76
Ebay 82.00% 2.14 99.00% 2.92 100.00% 3.17
Live 5.00% 3.80 21.00% 10.33 40.00% 23.6
Rescator 1 92.00% 2.02 100.00% 2.52 100.00% 2.14
Rescator 2 16.00% 2.87 54.00% 9.98 84.00% 18.02
Sohu 5.00% 2.20 20.00% 10.2 51.00% 22.49
PythonCAPTCHA 15.00% 2.60 47.00% 9.32 93.00% 17.95
Weibo 55.00% 2.54 98.00% 6.24 100.00% 5.99
Yellow brick 94.00% 2.23 100.00% 2.73 100.00% 2.5
Overall 63.00% 2.33 79.92% 5.2 89.85% 8.36

a significant usability effect which has been discussed extensively
in prior work [8, 76].

5 PREVALENCE OF LEGACY CAPTCHAS ON
MODERNWEB

In this section, we seek to answer how text-based CAPTCHAs are
still relevant at the web scale and how the insights we gained in
the previous sections can be translated into actionable tasks. To
this end, we performed a large-scale crawling experiment to locate
CAPTCHA-protected websites. Then, we ran an experiment using
the integrated solver to check the effectiveness of the solver.

5.1 Ethical Considerations.
We had the following ethical considerations to conduct the experi-
ments. First, we followed a strict minimum interaction policy with
all target websites. This entailed refraining from overloading target
web applications by submitting only one request to the server, even
in cases where CAPTCHAs were found to be vulnerable. To solve
identified CAPTCHAs on the crawled websites, we generated an
offline version of the application and ran the experiment on the
locally hosted website. That said, no active CAPTCHA solving or
repetitive requests were generated on the target websites. Second,
We contacted all the impacted websites with the deprecated security
feature, notifying them about our findings several months before
the submission of this paper. The detail of this process is explained
in Appendix A.7. While few publishers acknowledged the issue
and requested additional information on how to solve the issue,
in the rest of the cases, the impacted pages with the vulnerable
CAPTCHAs became unreachable or modified without any explicit
acknowledgment. Third, in an effort to prevent any potential is-
sues for website owners, we have excluded the list of vulnerable
domains, along with their corresponding CAPTCHAs, from our
published artifacts. This approach ensures that website owners are
not impacted by our findings in any negative way.

5.2 Data Seeds
The starting stage of the pipeline is to access a list of target URLs
to be crawled looking for text CAPTCHAs. We have separated our
dataseed into two categories:

1) Landing pages from CrUX Top 1M dataset [24] and Top 100K
domains of Alexa [83]. The CrUX dataset includes the top million
most popular websites based on the ChromeUser Experience Report
(CrUX). The original dataset which is publicly accessible includes
over 15M URLs. The dataset provides many attributes including
the origin (URL) of the pages for every month [81]. We have used
the data from December 2022 in our crawling pipeline. To make
the experiments more comprehensive, we included the top 100K
domains from Alexa as well. Later in this section, we discuss more
details on how we have used the collected data in our analysis.

3) Login pages from PILU-90K dataset [66]. The dataset contains
90K URLs including index, login, and phishing pages. The authors
identified the login URLs by utilizing Quantcast [58] top million
websites between November 2019 to February 2020, crawled the
pages of each website, and searched for password fields in the forms.
The other dataseed for login pages was the dataset utilized in [14].
The authors have analyzed over a million domains from Alexa top
ranking list and conducted the experiments between May to Octo-
ber 2019. This dataset provides a group of 20K URLs collected by
doing a breadth-first search with depth two on addresses from [22].

5.3 Analysis Results
Throughout our experiment, we faced a 30% failure rate when
crawling web pages, encountering various error types including
DNS errors, 404 Not Found errors, 403 Forbidden errors, TSL/SSL-
related issues, and timeout errors. Upon filtering out unresponsive
domains, we successfully identified more than 3,000 websites em-
ploying text-based CAPTCHAs. It is worth noting that the CrUX 1M
and Alexa dataseed includes domains that mostly point to landing
pages of websites, rather than login or other forms that are more
likely to include CAPTCHAs. In the following, we provide details
on the nature of the marked websites regarding their category and
involved users. Figure 3 illustrates examples of the usage of text-
based CAPTCHAs on high-profile websites in the government and
finance sectors with hundreds of thousands of users.
Application Categories. To gather additional insights on websites
that utilize text CAPTCHAs, we leveraged the results obtained from
SimilarWeb [63] to determine the category of each website. The
distribution of websites across different categories is illustrated
in Figure 5 in Appendix 4. We identified 25 web categories. Our
analysis showed that 46% of websites that use text CAPTCHAs for
security purposes belong to the categories including government,
technology, finance, and education. The most critical categories,
such as Law and government, Finance and Health, cover 29% of the
detected CAPTCHAs.
Involved Users. We conducted an analysis by analyzing the num-
ber of monthly visits to websites belonging to the top four cate-
gories. The cumulative distribution function (CDF) graph in Figure
4 showcases the extensive range of monthly visits received by web-
sites in these categories. It’s important to note that the graph only
displays four categories for brevity. The analysis shows that these
websites are fairly high-profile in terms of observed traffic. For
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(a) Government
Civil Registry Services
1.2M Monthly Users

(b) Finance
Financial Corporation
265K Monthly Users

(c) Finance
Online Banking

271K Monthly Users

Figure 3: Weak CAPTCHAs on critical web applications. Examples of using crackable CAPTCHAs on the login page of online
banking and Government websites with tens of thousands of monthly visits.

instance, about 50% of the websites in each category usually receive
more than 100K monthly users. This analysis provides an approx-
imate view of the potential impacts of possible abuses, shedding
light on the consequences of service exploitation on involved users.

Figure 4: CDF Diagram of Monthly Visits per Category. 50%
of the websites with vulnerable CAPTCHAs have more than
100K monthly visits.

Collection and Labeling After identifying websites with text-
based CAPTCHAs, we downloaded images with CAPTCHA at-
tributes from the websites. After cleaning the collected data, we
were able to successfully verify 1,600 unique CAPTCHAs. For this
set of CAPTCHAs, we manually labeled them and assigned their
complexity level based on their features. In the following, we delve
into the security features employed in the collected CAPTCHAs
and evaluate the performance of our proposed CAPTCHA cracker
on these features. This analysis provides insights into the effective-
ness of current security measures in protecting against automated
attacks and sheds light on potential vulnerabilities that could be
exploited by adversaries.
Level of Complexity. We labeled the collected CAPTCHAs in
seven different complexity levels. While we observed Non-English
and less commonCAPTCHAs (e.g., Math), over 77% of the CAPTCHAs
utilize either simple colors or background noise in the generated
CAPTCHAs. Table 5, in the Appendix, shows an overview of these
security features and their usage rate based on the collection cor-
pus alongside samples for each group. It is worth noting that

while adding excessive noise or using different character styles
for text CAPTCHAs can enhance their security, it may also nega-
tively impact the user experience, as legitimate users also find the
CAPTCHAs more difficult to solve as well.
Solving CAPTCHAs in the Wild. In this section, we provide a
detailed analysis of the CAPTCHAs collected from various websites
and the results of the attempts to crack them using the pre-trained
solver, discussed in Section 4.2. To evaluate the performance with
a single attempt, we used the Levenshtein distance metric [75].
Table 3 presents the distribution of distance values among differ-
ent categories. The results are categorized into different buckets
based on the edit distance between the true label and the predicted
value. A distance of 0 indicated that the CAPTCHA was solved
correctly, while a distance of at most 2 meant that the cracker had
recognized the scheme but failed to identify certain characters due
to the overlap of noises and characters. These cases were more
likely to be cracked after multiple attempts. Upon analyzing cases
with a distance of at most 4, we found that the errors were mainly
due to failure in denoising the image. Therefore, improving the
preprocessing stage of the cracker can significantly impact the suc-
cess of cracking these schemes. Finally, we defined the bucket with
more than 4 errors, which mostly included CAPTCHAs with exces-
sive noise, unfamiliar styles, math CAPTCHAs, and non-English
CAPTCHAs. In summary, our attempts to crack CAPTCHAs col-
lected from websites in the wild faced several challenges, primarily
due to the absence of verified labels. However, our analysis using the
Levenshtein distance metric provided insights into the performance
of the cracker and highlighted potential areas for improvement in
the preprocessing stage. The different buckets we defined based
on the edit distance values allowed us to categorize the results and
identify the types of CAPTCHAs that were difficult to crack.

6 DISCUSSION
We here put the results of experiments into a bigger context and
discuss how they can influence research on automated web attacks.
Web Applications with Text-Based CAPTCHAs In this paper,
we identified more than 3,000 websites with text-based CAPTCHAs.
At first glance, the number may seem small. However, note that our
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Table 3: Distribution of distance values using Lev-
enshtein Distance metric. Result of the integrated
CAPTCHA solver on different web categories.

Government Finance Health eCommerce Others

LD1= 0 24.81% 20.00% 18.42% 13.20% 19.13%
LD ≤ 2 48.87% 42.50% 52.63% 46.78% 40.72%
LD ≤ 4 18.79% 27.5% 26.31% 33.96% 29.43%
LD ≥ 5 7.51% 10.00% 2.63% 11.32% 10.72%
Total 133 80 53 38 1321
1 Levenshtein Distance

method to identify websites with text-based CAPTCHAs is a best-
effort approach. In particular, we had to define a trade-off between
launching a comprehensive experiment to identify CAPTCHA-
based websites and following ethics. That is, among other factors,
many websites trigger CAPTCHAs when the remote agent mani-
fests aggressive behavior. For ethical reasons, we avoided any inter-
action that could overload or make excessive requests to websites.
We hope the reader acknowledges that triggering such responses
requires deeper interactions with target websites, which we inten-
tionally avoided to minimize potential harm. However, we showed
with minimal interaction (only with the landing page), we identified
this deprecated feature in various high-profile websites.
Relevance of the Study in Today’s Modern Web. We acknowl-
edge that contemporary securitymethods such as ReCAPTCHA [13]
and other behavioral-based methods [9, 12] are the default mech-
anisms for defending against automated web traffic. However, at
the global scale, text-based CAPTCHAs are still being used in web-
sites that offer important services and maintain important user
data. In particular, over 50% of the CAPTCHAs were from websites
that involve over 100K monthly users (Section 5.3) including ad-
min panels in critical sectors such as financial and healthcare. In
a broader context, text-based CAPTCHAs is another example of a
brittle security mechanism that is still in use in many websites –
imposing virulent risks on the security and privacy of their users.
Unfortunately, addressing issues of this sort on today’s web has
never been easy because it often requires community consensus on
where and how auditing mechanisms should take place. Further-
more, defining the right incentives among entities has never been
a trivial task. However, a coalition among entities such as cloud
service providers that host a large group of these websites, web
publishers, and developers is necessary to make awareness and
maintain the security posture of web applications and their users.
Autonomous Scanning on Known Security Problems. There
has been significant progress on the attackers’ side to make large-
scale web attacks more effective while evading detection. The inte-
gration of pre-trained CAPTCHA solvers in the scanning pipeline
is, in fact, taking one more step in that direction. While the results
of this study show the possibility of low-cost integration of pre-
trained models, a more concerning trend is the integration of robust
transfer learning and local optimization methods in this domain,
making offensive scans even more effective over time. Our empiri-
cal analysis shows that developing more intelligent and evasive web
scanners is a fairly straightforward process. With more training

data and incremental improvement among adversaries, pre-trained
models are likely to become a serious threat at the web scale.

7 RELATEDWORK
In this section, we present a review of related work on the implica-
tions of deprecated web security features, web scanning as well as
detection mechanisms.
Security Analysis of Deprecated Features. Prior work has dis-
cussed the security issues in deprecated features in software sys-
tems. Mirian et al. [47] studied the deprecation process for 2.5 years
of web features in Chrome to answer how this process happens.
Goethen et al. [23] proposed a security mechanism to standardize
the deprecation and removal of risky web security features. Other
work focused on the deprecation process on Java applications by
investigating how API deprecation could lead to vulnerable code
examples in platforms such as StackOverflow [62] or how API
deprecation can impact client applications [88].
Evading Anti-Scanning Defenses. Prior research has shown
several different ways that adversaries use to evade fingerprinting
efforts. In [19, 20, 50, 64, 65, 70, 73], authors discuss how scanners
can bypass fingerprinting techniques such as user-agent, cookies,
and extensions list. Similar studies including [19, 44, 49] bring the
same mindset to the operating system and hardware features such
as the platform, timezone, and WebGL renderer. In [32], Invernizzi
et. al. have analyzed blackhat cloaking methods used in prominent
cloaking services. They use the results to propose an anti-cloaking
system. In [86], authors have done an empirical study on client-
side methods adapted by phishing pages in order to evade the
ecosystem’s detection methods. The goal of our work is to take a
step further and equip the scanners with functionalities that make
detection even harder through pre-trained CAPTCHA solvers.
Attacking Challenge-based Defenses. Challenge-based defense
mechanisms have been a main line of defense against automated
attacks. Tang et al. [68] present an architecture that takes the pre-
processed CAPTCHA images as the input and aims to identify the
number of characters using a CNN model. They collected various
CAPTCHAs from the 50 most popular websites and tested each of
the CAPTCHAs against the attack model they developed. In [29]
and [28], Gao et al. present other dynamic approaches for the seg-
mentation stage. The paper includes extracting components using a
Log-Gabor filter followed by partition and recognition. Log-Gabor
filters are applied to the images directly and extract the characters
in CAPTCHA images in all four directions. Other techniques [5, 40]
incorporate a two-stage pipeline for the segmentation and recog-
nition phase and propose a single step that does both objectives.
Zhang et al. [85] incorporated a generative adversarial network
(GAN) model to solve a dataset of CAPTCHA images they collected
after running a Tor-based crawling experiment.
Difference from Existing Work. The major difference between
this and the prior work is that we put the problem of CAPTCHA
solving into the context of adversarial web scanning. Instead of
proposing an offline method to solve CAPTCHAs, this study aims
to answer a different question: how an adversary can benefit from
advances in learning domains and develop models with minimal
training and data dependency. Answering this question is critical
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to empirically measure the effectiveness of modern adversarial
scanners and inform threat modeling in web attacks.

8 CONCLUSIONS
In this paper, we evaluated the possibility of incorporating avail-
able methods in solving a deprecated security feature – text-based
CAPTCHAs. We aimed to answer what would it take to build an
effective and generalizable method when access to training data
is minimal. We observed that object detection methods can be
weaponized by adversaries for adversarial purposes as they achieve
a success rate of 80% across several CAPTCHA schemes with mini-
mal training. We identified several websites with thousands of users
that can be impacted. That is, with a pre-trained model, we were
able to solve 20% of those CAPTCHAs in a single attempt with no
human intervention in the loop, showing the potential usage of
such methods in autonomous offensive scanners in the wild.
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A APPENDIX
A.1 Current Defense Layers
We focus on three main layers of defense against automated web
traffic. We explain each layer and discuss their effectiveness and
potential weaknesses.
The Role of Traffic Attribution. An emerging defense mecha-
nism to identify web scanners is to incorporate certain aspects of
incoming web traffic as signals to detect automated scanning oper-
ations. Features such as sudden spikes in pageviews, high bounce
rate (i.e., visiting a single page without clicking anything on the
page), and low session duration through pages have been used in
current solutions [9, 11]. Although integrating these techniques in
the defense side is useful in detecting more aggressive scanners and
bots, they cannot reveal much detail about more evasive scanners
that operate more in a more targeted and non-aggressive fashion.
In fact, in the most complex and consequential situations, evasive
scanners can bypass almost all of these defense mechanisms by
injecting artificial delays between consecutive requests, as men-
tioned in the threat model, or by artificially increasing the session
duration by automatically triggering specific events periodically.
Furthermore, we expect that the diversity of new forms of web
attacks will continue to increase since attacks are becoming con-
tinuously more mature in imitating human interaction, making it
increasingly more difficult to analyze the intent of remote agents.
The Role of Fingerprinting. Conventional fingerprinting tech-
niques [17, 42, 50, 84] gather specific details about connecting de-
vices such as user agents, hardware details, geolocation, and gen-
erate a unique id for that device. Fingerprints can be used for sev-
eral purposes such as detecting previously seen adversarial agents
attempting to visit the target web application. If an agent with au-
tomated activity is detected, the corresponding fingerprint will be
used in subsequent checks. While fingerprinting mechanisms have
been useful in tracking real users, they offer limited capabilities to
identify modern evasive attacks. In particular, it is not very difficult
to generate malicious code that can report any arbitrary identity or
establish connections from different parts of the web while launch-
ing attacks in a stealthy way [31, 36, 71] – as mentioned in the
threat model. For instance, it is very common to incorporate var-
ious network proxies and use less suspicious traffic sources, use
full-fledged browsers instead of using curl or headless browsers,
report arbitrary information while interacting with the web appli-
cation, making the current defense mechanisms less effective in
detecting more evasive cases.
TheRole of CAPTCHAs. Solving a CAPTCHA challenge has been
one of the main layers of defense against automated scanners and
offensive bots. Suspicious agents are required to solve a CAPTCHA
challenge by extracting the content of a distorted image, object, or
audio file to access the desired service. The underlying assumption
is that human users can extract letters or identify objects easier
than scanners and non-human agents. Image-based CAPTCHA,
reCAPTCHA v2 [25] and hCAPTCHA [30] are the main techniques
widely used in practice. One of the main drawbacks of CAPTCHA
challenges, in general, is that the process is significantly dependent
on real users. In fact, dedicating the main defense responsibility to
legitimate users is not very in line with important security design
principles such as psychological acceptability and the economy

of mechanism. Unfortunately, many users, including non-English
speaking users and special groups, have reported difficulties in
solving specific forms of CAPTCHA challenges [26, 48, 61, 77].
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A.2 CAPTCHA Schemes

Table 4: All CAPTCHA schemes used in our evaluations.

Scheme Sample Security Features

Cat 1 - Random color for characters

Cat 2
- Random color for characters
- Overlapping

Cat 3
- Random color for characters
- Random color arc lines

Cat 4
- Random color for characters
- Overlapping
- Random color arc lines

Cat 5

- Random color for characters
- Background dots and arc lines
- Different fonts lines
- Different number of characters

Python CAPTCHA [6] - Background dots and horizontal lines
- Overlapping

Yellow Brick [37] - Background dots and horizontal lines

rescator_1 [37] - Random color for characters
- Random color horizontal lines

rescator_2 [37] - Horizontal lines

alipay [78] - Styling
- Overlapping

baidu [78] - Overlapping
- Arc lines

ebay [78] - Overlapping

google [78] - Styling
- Overlapping

jd [78] - Overlapping
- Background pattern

live [78] - Styling
- Character deformation

qihu [78]
- Styling
- Overlapping
- Background pattern

sina [78] - Arc lines

sohu [78]
- Random color for characters
- Random color arc lines
- Character rotation

weibo [78]
- Overlapping
- Character rotation
- Color gradient characters

wiki [78] - Styling

A.3 Security Features in the Detected
CAPTCHAs

Table 5: CAPTCHA security features. Different features
found for text CAPTCHAs in the wild.

Features Usage Rate Sample CAPTCHAs

Simple Colors 22.02%

Background Noise 56.93%

Excessive Noise 2.32%

Double Text 1.25%

Styling 12.84%

Non-English 1.62%

Math 2.97%

A.4 Distribution of CAPTCHA-Enabled
Websites

Figure 5: Distribution of categories for websites that use text
CAPTCHAs. Critical categories such as Finance and Health
are among the top 10, led by Law & Government.

A.5 Uncracked Schemes with our model
A.6 Evasion Methods in Automated Scanners
A.7 Notification
Given the number of users and the importance of services offered
in the majority of those web applications, we began notifying the
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(a) jd (b) qihu

(c) baidu (d) wiki

Figure 6: Schemes samples that our Model failed to crack.
Heavy background noise and character overlapping are the
most common causes. It can also fail if the captcha presents
characters with a different style regarding how the model
was trained.

Table 6: Evasion Methods in Automated Scanners. The scan-
ners used in the case studies can utilize the following evasive
methods using a full-fledged browser on physical machines.

Evasion Category Target Property Reference Credential
Stuffing

Log4j
Exploit

Browser

User Agent [19, 20, 50] ✓ ✓

HTTP Headers [19, 20, 70] ✓ ✓

Plugins list [19, 20, 49] ✓ ✓

Extensions list [64, 65, 73] ✓ ✓

Cookies [7, 70] ✓ ✓

HTML5 Canvas [2, 19, 41] ✓ ✓

WebRTC [44] ✓ ✓

Ad Blocker Usage [43, 44] ✓ ✓

Operating
System

Timezone [44, 70] ✓ ✓

Screen Resolution [19, 20, 49] ✓ ✓

Color Depth [19, 20] ✓ ✓

List of fonts [19, 49] ✓ ✓

Platform [44, 70] ✓ ✓

Hardware WebGL Vendor [44] ✓ ✓

WebGL Renderer [44] ✓ ✓

Network IP Cloaking [27, 32] ✓ ✓

Network Proxies [32] ✓ ✓

Application Event Listener Fuzzing [39, 72] ✓ ✓

Pre-trained Solvers This work ✓ ✓

system administrators of websites. Since many web applications
were using theWHOIS privacy services, we used other services such
as contact details scraper from Apify [16] together with manual
search for contact information of the websites. After collecting the
list of emails, we sent emails to the website owners including a
screenshot of the form which employed the mentioned CAPTCHA
in two different occasions with minor changes in the text of the
emails. Appendix A.8 shows the template of the email we sent to
the web application operators.

We received 22% automated or human-generated responseswhich
indicated that the message was received or a ticket was issued based
on the email. We received emails to provide more information about
the incidents and examples of possible evasions. At the time of sub-
mission, we noticed cases that the vulnerable pages were removed
(e.g., CAPTCHA was removed, the page with the CAPTCHA was

modified or not accessible anymore, the inspect elements became
disabled). Unfortunately, we were not able to receive sufficiently
deep insights from the publishers to generate any generalizable
conclusion on why those features were still active.

A.8 Notification Email
Greetings,

We hope this e-mail finds you well. We are
a group of security researchers at Research Insti-
tution. We have been working on offensive web
scanning and their malicious activities on critical
web applications.

Our recent analysis shows that the website ex-
ample.com currently uses a vulnerable text CAPTCHA,
which is meant to protect against automated bots.
This CAPTCHA can be solved automatically, al-
lowing the malicious code to bypass this security
measure and gain access to the website’s features.
This can potentially raise serious security con-
cerns, including the risk of data breaches, website
defacements, or other possible abuses (e.g., send-
ing targeted spam and spear phishing attacks). At-
tached is a screenshot of the observed CAPTCHA
for reference. Given the significant role of the web-
site and the number of users, this issue can have a
potentially high impact.

With this email, we kindly wanted to bring
this issue to your attention and encourage you to
use more secure options, such as reCAPTCHA by
Google. Please let us know if you needmore details
about the issue. We would be happy to provide
more information and discuss it further.

If you have any questions or concerns regard-
ing this matter, please do not hesitate to contact
researcher at researcher@email.

Best regards,

A.9 Limitations
In this research, our primary focus was on analyzing English text
CAPTCHAs. By concentrating on this specific type of CAPTCHA,
we were able to delve deep into its characteristics and challenges.
However, it is important to acknowledge that there are various
other types of CAPTCHAs exist, each with its own unique features
and considerations. One aspect that we were unable to explore
thoroughly in this research was non-English CAPTCHAs. Different
languages present their own set of linguistic, which can significantly
impact the design and effectiveness of CAPTCHAs. Moreover, there
are other categories of CAPTCHAs such as math-based CAPTCHAs
that we did not cover in this research. Investigating the intricacies
of math CAPTCHAs would require incorporating mathematical
knowledge into the pipeline stages.

Furthermore, popular CAPTCHA services like reCAPTCHA and
hCAPTCHA employ different mechanisms and challenges com-
pared to the text-based CAPTCHAs. These services often incorpo-
rate a combination of image recognition, audio challenges, and
behavioral analysis to verify users. Researching these types of
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CAPTCHAs would require significant modifications to our existing
pipeline stages, as well as the inclusion of specific datasets and
algorithms tailored to handle the unique challenges they present.

Another important point to consider in our analysis of CAPTCHAs
in the wild is that we currently do not employ any deep crawling
mechanisms. We limit our search to the single page associated with
the given URL, focusing solely on CAPTCHAs found within that
page. However, we believe that by expanding the crawler to exam-
ine multiple pages within each website through deep crawls, we
would likely encounter a greater number of text CAPTCHAs.
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